Gravity inversion of basement relief using Particle Swarm Optimization by automated parameter selection of Fourier coefficients

被引:18
|
作者
Roy, Arka [1 ,2 ]
Dubey, Chandra Prakash [1 ]
Prasad, Muthyala [1 ,2 ]
机构
[1] Natl Ctr Earth Sci Studies, Trivandrum 695011, Kerala, India
[2] Cochin Univ Sci & Technol, Dept Marine Geol & Geophys, Kochi 682022, Kerala, India
关键词
Sedimentary basin; Gravity inversion; Particle Swarm Optimization; Fourier domain; SEDIMENTARY BASINS; DENSITY CONTRAST; UNCERTAINTY ASSESSMENT; LINE INTEGRALS; 3-D INVERSION; 3D INVERSION; ANOMALIES; DEPTH; INTERFACE; GRADIENT;
D O I
10.1016/j.cageo.2021.104875
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A global optimization technique using particle swarm optimization (PSO) is presented to estimate the depth to the basement of a heterogeneous sedimentary basin from the vertical component of the residual gravity anomalies. Inversion of basement relief for known density distributions has particular importance in many real applications such as mineral exploration, geothermal exploration, etc. Generally, gravity inversion in the Fourier domain allows a reduction in the optimization parameter. However, in the present study, an automated parameter selection criterion is developed for further reduction of optimizing parameters. A detailed uncertainty appraisal analysis is also performed for different configurations of synthetic models, which ensures the reliability of the optimization technique. All synthetic models are contaminated with white Gaussian noise, and an optimized depth profile is compared with noise-free data for sensitivity analysis. The result shows the robustness of the optimization method in the presence of noise. The technique is implemented on two real gravity anomaly profiles (1) Godavari basin, India, and (2) Sayula basin, Mexico. The optimized depth profile shows a good agreement with the published results using other optimization techniques. The method developed in the present work is a novel approach for the automatic selection of parameters as per the model's complexity. It provides an inversion technique that considers a small number of parameters with a minimum computational expense.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
    Pallero, J. L. G.
    Fernandez-Martinez, J. L.
    Bonvalot, S.
    Fudym, O.
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2015, 116 : 180 - 191
  • [2] 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
    Pallero, J. L. G.
    Fernandez-Martinez, J. L.
    Bonvalot, S.
    Fudym, O.
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2017, 139 : 338 - 350
  • [3] Regularization parameter selection in the 3D gravity inversion of the basement relief using GCV: A parallel approach
    Mojica, O. F.
    Bassrei, A.
    [J]. COMPUTERS & GEOSCIENCES, 2015, 82 : 205 - 213
  • [4] Gravity field inversion using Improved Particle Swarm Optimization (IPSO) for estimation of sedimentary basin basement depth
    Loni, Soudeh
    Mehramuz, Mahmoud
    [J]. CONTRIBUTIONS TO GEOPHYSICS AND GEODESY, 2020, 50 (03): : 303 - 323
  • [5] Two-Dimensional Gravity Inversion of Basement Relief for Geothermal Energy Potentials at the Harrat Rahat Volcanic Field, Saudi Arabia, Using Particle Swarm Optimization
    Alqahtani, Faisal
    Abraham, Ema Michael
    Aboud, Essam
    Rajab, Murad
    [J]. ENERGIES, 2022, 15 (08)
  • [6] Gravity inversion of a fault by Particle swarm optimization (PSO)
    Toushmalani, Reza
    [J]. SPRINGERPLUS, 2013, 2 : 1 - 7
  • [7] The novel parameter selection of Particle swarm optimization
    Li, Zhuo
    Qu, Xueluo
    [J]. ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 344 - +
  • [8] Gravity inversion of basement relief using approximate equality constraints on depths
    Barbosa, VCF
    Silva, JBC
    Medeiros, WE
    [J]. GEOPHYSICS, 1997, 62 (06) : 1745 - 1757
  • [9] Efficient gravity inversion of basement relief using a versatile modeling algorithm
    Silva, Joao B. C.
    Santos, Darciclea F.
    [J]. GEOPHYSICS, 2017, 82 (02) : G23 - G34
  • [10] On convergence and parameter selection of an improved particle swarm optimization
    Chen, Xin
    Li, Yangmin
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2008, 6 (04) : 559 - 570