Regularization parameter selection in the 3D gravity inversion of the basement relief using GCV: A parallel approach

被引:16
|
作者
Mojica, O. F. [1 ,2 ,3 ]
Bassrei, A. [1 ,2 ,3 ]
机构
[1] Univ Fed Bahia, Inst Geosci, BR-40015970 Salvador, BA, Brazil
[2] Univ Fed Bahia, Res Ctr Geophys & Geol, BR-40015970 Salvador, BA, Brazil
[3] Natl Inst Sci & Technol Petr Geophys, Sao Paulo, Brazil
关键词
Generalized cross-validation; Gravity modeling and inversion; Linearized inversion; Regularization; Parallel processing; EQUATIONS; DENSITY;
D O I
10.1016/j.cageo.2015.06.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we present a computationally efficient automatic method for the optimal selection of the regularization parameter in the 3D inversion of gravity data. We use a linearized inversion method to estimate the depth of a 3D sedimentary basin in which the density contrast varies parabolically with the depth. The sedimentary basin is discretized into rectangular juxtaposed prisms with thicknesses that represent the depths from the surface to the interface and are the parameters to be estimated in the inversion process from the gravity anomaly. To deal with the singularity of the normal equation matrix in the linearized least squares method, standard-form Tikhonov regularization is incorporated in each step. The Generalized cross-validation (GCV) technique, which is capable of finding the optimal regularization parameter in an automatic manner, is adopted in this study. We present the simulation results with a synthetic model of a complex sedimentary basin, taking advantage of a parallel inversion algorithm implemented by adopting the message passing interface (MPI) standard on a multi-core cluster. This makes it possible to reduce the computer time by more than one order of magnitude. The applicability and efficacy of the GCV technique for the selection of the optimum regularization parameter are demonstrated. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 50 条
  • [1] Gravity inversion of 2D basement relief using entropic regularization
    Silva, Joao B. C.
    Oliveira, Alexandre S.
    Barbosa, Valeria C. F.
    [J]. GEOPHYSICS, 2010, 75 (03) : I29 - I35
  • [2] 3D gravity inversion of basement relief - A depth-dependent density approach
    Chakravarthi, Vishnubhotla
    Sundararajan, Narasimman
    [J]. GEOPHYSICS, 2007, 72 (02) : I23 - I32
  • [3] 3D Gravity Inversion using Tikhonov Regularization
    Reza Toushmalani
    Hakim Saibi
    [J]. Acta Geophysica, 2015, 63 : 1044 - 1065
  • [4] 3D Gravity Inversion using Tikhonov Regularization
    Toushmalani, Reza
    Saibi, Hakim
    [J]. ACTA GEOPHYSICA, 2015, 63 (04) : 1044 - 1065
  • [5] Gravity inversion of basement relief using Particle Swarm Optimization by automated parameter selection of Fourier coefficients
    Roy, Arka
    Dubey, Chandra Prakash
    Prasad, Muthyala
    [J]. COMPUTERS & GEOSCIENCES, 2021, 156
  • [6] 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
    Pallero, J. L. G.
    Fernandez-Martinez, J. L.
    Bonvalot, S.
    Fudym, O.
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2017, 139 : 338 - 350
  • [7] 3D gravity inversion using a model of parameter covariance
    Chasseriau, P
    Chouteau, M
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2003, 52 (01) : 59 - 74
  • [8] In-depth 3D magnetic inversion of basement relief
    Santos, Darciclea F.
    Silva, Joao B. C.
    Lopes, Jozinei F.
    [J]. GEOPHYSICS, 2022, 87 (03) : G45 - G56
  • [9] Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data
    Moghadasi, M.
    Kalateh, A. Nejati
    Rezaie, M.
    [J]. JOURNAL OF MINING AND ENVIRONMENT, 2019, 10 (02): : 357 - 364
  • [10] 3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization
    Liu Jin-Zhao
    Liu Lin-Tao
    Liang Xing-Hui
    Ye Zhou-Run
    [J]. APPLIED GEOPHYSICS, 2015, 12 (02) : 137 - 146