Synthesis of Hierarchical Sb2MoO6 Architectures and Their Electrochemical Behaviors as Anode Materials for Li-Ion Batteries

被引:38
|
作者
Lu, Xuan [1 ]
Wang, Zhenyu [1 ]
Lu, Lu [2 ,3 ]
Yang, Guang [2 ,3 ]
Niu, Chunming [1 ]
Wang, Hongkang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, CNRE, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China
基金
美国国家科学基金会;
关键词
HIGH-CAPACITY; LITHIUM; PERFORMANCE; STORAGE; CARBON; NANOSTRUCTURES; NANOBELTS; COATINGS; NANORODS; ENERGY;
D O I
10.1021/acs.inorgchem.6b00856
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report a facile microwave-hydrothermal synthesis of hierarchical Sb2MoO6 architectures assembled from single-crystalline nanobelts, which are first demonstrated as anode materials for lithium-ion batteries (LIBs) with superior electrochemical properties. Sb2MoO6 delivers a high initial reversible capacity of similar to 1140 mA h/g at 200 mA/g with large initial Coulombic efficiency of similar to 89%, and a reversible capacity of similar to 878 mA h/g after 100 cycles at 200 mA/g. As a new anode, the electrochemical behaviors are investigated through ex situ TEM and XPS measurements, revealing that the superior electrochemical performance is attributed to the novel hierarchical structures and the synergistic interaction between both the active Sb- and Mo-species, in which the in situ generated Li2OMoOx serves as matrix and efficiently buffers the volume changes of the LiSb alloyingdealloying upon cycling.
引用
下载
收藏
页码:7012 / 7019
页数:8
相关论文
共 50 条
  • [21] Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries
    Phuruangrat, Anukorn
    Chen, Jun Song
    Lou, Xiong Wen
    Yayapao, Oranuch
    Thongtem, Somchai
    Thongtem, Titipun
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 107 (01): : 249 - 254
  • [22] Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries
    Anukorn Phuruangrat
    Jun Song Chen
    Xiong Wen Lou
    Oranuch Yayapao
    Somchai Thongtem
    Titipun Thongtem
    Applied Physics A, 2012, 107 : 249 - 254
  • [23] Template-free synthesis of hierarchical NiO microtubes as high performance anode materials for Li-ion batteries
    Hong, Yiwen
    Yang, Jingxia
    Xu, Jingli
    Choi, Won Mook
    CURRENT APPLIED PHYSICS, 2019, 19 (06) : 715 - 720
  • [24] Electrochemical performances of Al-based composites as anode materials for Li-ion batteries
    Chen, Zhongxue
    Qian, Jiangfeng
    Ai, Xinping
    Cao, Yuliang
    Yang, Hanxi
    ELECTROCHIMICA ACTA, 2009, 54 (16) : 4118 - 4122
  • [25] Synthesis, Structure Transformation, and Electrochemical Properties of Li2MgSi as a Novel Anode for Li-Ion Batteries
    Liu, Yongfeng
    Ma, Ruijun
    He, Yanping
    Gao, Mingxia
    Pan, Hongge
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (25) : 3944 - 3952
  • [26] Synthesis, characterization and electrochemical properties of α-MoO3 nanobelts for Li-ion batteries
    Yayapao, Oranuch
    Phuruangrat, Anukorn
    Thongtem, Titipun
    Thongtem, Somchai
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 90 (06) : 1224 - 1230
  • [27] Synthesis, characterization and electrochemical properties of α-MoO3 nanobelts for Li-ion batteries
    Oranuch Yayapao
    Anukorn Phuruangrat
    Titipun Thongtem
    Somchai Thongtem
    Russian Journal of Physical Chemistry A, 2016, 90 : 1224 - 1230
  • [28] Crystalline Sb-Cu alloy films as anode materials for Li-ion rechargeable batteries
    Gnanamuthu, R. M.
    Jo, Yong Nam
    Lee, Chang Woo
    CURRENT APPLIED PHYSICS, 2013, 13 (07) : 1454 - 1458
  • [29] Mechanochemical synthesis of Sn1-xMoxO2 anode materials for Li-ion batteries
    Martos, M
    Morales, J
    Sanchez, L
    JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) : 2979 - 2984
  • [30] Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries
    Su, Yu-Sheng
    Hsiao, Kuang-Che
    Sireesha, Pedaballi
    Huang, Jen-Yen
    BATTERIES-BASEL, 2022, 8 (01):