Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics

被引:3
|
作者
Steffen, Lea [1 ]
Koch, Robin [1 ]
Ulbrich, Stefan [1 ]
Nitzsche, Sven [1 ]
Roennau, Arne [1 ]
Dillmann, Rudiger [1 ]
机构
[1] FZI Res Ctr Informat Technol, Interact Diag & Serv Syst IDS, Intelligent Syst & Prod Engn ISPE, Karlsruhe, Germany
关键词
spiking neural networks; parallel hardware architectures; benchmark; robotic motion control; neurorobotic;
D O I
10.3389/fnins.2021.667011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Animal brains still outperform even the most performant machines with significantly lower speed. Nonetheless, impressive progress has been made in robotics in the areas of vision, motion- and path planning in the last decades. Brain-inspired Spiking Neural Networks (SNN) and the parallel hardware necessary to exploit their full potential have promising features for robotic application. Besides the most obvious platform for deploying SNN, brain-inspired neuromorphic hardware, Graphical Processing Units (GPU) are well capable of parallel computing as well. Libraries for generating CUDA-optimized code, like GeNN and affordable embedded systems make them an attractive alternative due to their low price and availability. While a few performance tests exist, there has been a lack of benchmarks targeting robotic applications. We compare the performance of a neural Wavefront algorithm as a representative of use cases in robotics on different hardware suitable for running SNN simulations. The SNN used for this benchmark is modeled in the simulator-independent declarative language PyNN, which allows using the same model for different simulator backends. Our emphasis is the comparison between Nest, running on serial CPU, SpiNNaker, as a representative of neuromorphic hardware, and an implementation in GeNN. Beyond that, we also investigate the differences of GeNN deployed to different hardware. A comparison between the different simulators and hardware is performed with regard to total simulation time, average energy consumption per run, and the length of the resulting path. We hope that the insights gained about performance details of parallel hardware solutions contribute to developing more efficient SNN implementations for robotics.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Spiking Neural Networks - Algorithms, Hardware Implementations and Applications
    Kulkarni, Shruti R.
    Babu, Anakha V.
    Rajendran, Bipin
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 426 - 431
  • [22] Community detection with spiking neural networks for neuromorphic hardware
    Hamilton, Kathleen E.
    Imam, Neena
    Humble, Travis S.
    PROCEEDINGS OF NEUROMORPHIC COMPUTING SYMPOSIUM (NCS 2017), 2017,
  • [23] Hardware Approximation of Exponential Decay for Spiking Neural Networks
    Eissa, Sherif
    Stuijk, Sander
    Corporaal, Henk
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [24] A Review of Algorithms and Hardware Implementations for Spiking Neural Networks
    Duy-Anh Nguyen
    Xuan-Tu Tran
    Iacopi, Francesca
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2021, 11 (02)
  • [25] An Efficient Hardware Architecture for Multilayer Spiking Neural Networks
    Luo, Yuling
    Wan, Lei
    Liu, Junxiu
    Zhang, Jinlei
    Cao, Yi
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 786 - 795
  • [26] A Hardware Accelerated Simulation Environment for Spiking Neural Networks
    Glackin, Brendan
    Harkin, Jim
    McGinnity, Thomas M.
    Maguire, Liam P.
    RECONFIGURABLE COMPUTING: ARCHITECTURES, TOOLS AND APPLICATIONS, 2009, 5453 : 336 - 341
  • [27] Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks
    Javanshir, Amirhossein
    Thanh Thi Nguyen
    Mahmud, M. A. Parvez
    Kouzani, Abbas Z.
    NEURAL COMPUTATION, 2022, 34 (06) : 1289 - 1328
  • [28] Parallel hyperparameter optimization of spiking neural networks
    Firmin, Thomas
    Boulet, Pierre
    Talbi, El-Ghazali
    NEUROCOMPUTING, 2024, 609
  • [29] Design and Implementation of Hardware Structure for Online Learning of Spiking Neural Networks Based on FPGA Parallel Acceleration
    Liu Y.
    Cao Y.
    Ye W.
    Lin Z.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (05): : 104 - 113
  • [30] A Hardware Architecture for Image Clustering Using Spiking Neural Networks
    Aurelio Nuno-Maganda, Marco
    Arias-Estrada, Miguel
    Torres-Huitzil, Cesar
    Hugo Aviles-Arriaga, Hector
    Hernandez-Mier, Yahir
    Morales-Sandoval, Miguel
    2012 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2012, : 261 - 266