Secrets of GrabCut and Kernel K-means

被引:23
|
作者
Tang, Meng [1 ]
Ben Ayed, Ismail [2 ]
Marin, Dmitrii [1 ]
Boykov, Yuri [1 ]
机构
[1] Univ Western Ontario, Dept Comp Sci, London, ON N6A 3K7, Canada
[2] Univ Quebec, Ecole Technol Super, Ste Foy, PQ G1V 2M3, Canada
关键词
CUTS;
D O I
10.1109/ICCV.2015.182
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The log-likelihood energy term in popular model-fitting segmentation methods, e.g. [39, 8, 28, 10], is presented as a generalized "probabilistic" K-means energy [16] for color space clustering. This interpretation reveals some limitations, e.g. over-fitting. We propose an alternative approach to color clustering using kernel K-means energy with well-known properties such as non-linear separation and scalability to higher-dimensional feature spaces. Our bound formulation for kernel K-means allows to combine general pair-wise feature clustering methods with image grid regularization using graph cuts, similarly to standard color model fitting techniques for segmentation. Unlike histogram or GMM fitting [39, 28], our approach is closely related to average association and normalized cut. But, in contrast to previous pairwise clustering algorithms, our approach can incorporate any standard geometric regularization in the image domain. We analyze extreme cases for kernel bandwidth (e.g.Gini bias) and demonstrate effectiveness of KNN-based adaptive bandwidth strategies. Our kernel K-means approach to segmentation benefits from higher-dimensional features where standard model-fitting fails.
引用
下载
收藏
页码:1555 / 1563
页数:9
相关论文
共 50 条
  • [21] SimpleMKKM: Simple Multiple Kernel K-Means
    Liu, Xinwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5174 - 5186
  • [22] Multiple Kernel k-Means with Incomplete Kernels
    Liu, Xinwang
    Li, Miaomiao
    Wang, Lei
    Dou, Yong
    Yin, Jianping
    Zhu, En
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2259 - 2265
  • [23] CPU and GPU parallelized kernel K-means
    Mohammed Baydoun
    Hassan Ghaziri
    Mohammed Al-Husseini
    The Journal of Supercomputing, 2018, 74 : 3975 - 3998
  • [24] Fast Approximated Multiple Kernel K-means
    Wang J.
    Tang C.
    Zheng X.
    Liu X.
    Zhang W.
    Zhu E.
    Zhu X.
    IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (11): : 1 - 10
  • [25] Multiple Kernel k-Means with Incomplete Kernels
    Liu, Xinwang
    Zhu, Xinzhong
    Li, Miaomiao
    Wang, Lei
    Zhu, En
    Liu, Tongliang
    Kloft, Marius
    Shen, Dinggang
    Yin, Jianping
    Gao, Wen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (05) : 1191 - 1204
  • [26] Scalable Multiple Kernel k-means Clustering
    Lu, Yihang
    Xin, Haonan
    Wang, Rong
    Nie, Feiping
    Li, Xuelong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4279 - 4283
  • [27] K-TRACE:: A kernel k-means procedure for classification
    Cifarelli, C.
    Nieddu, L.
    Seref, O.
    Pardalos, P. M.
    COMPUTERS & OPERATIONS RESEARCH, 2007, 34 (10) : 3154 - 3161
  • [28] Regularized Simple Multiple Kernel k-Means With Kernel Average Alignment
    Li, Miaomiao
    Zhang, Yi
    Ma, Chuan
    Liu, Suyuan
    Liu, Zhe
    Yin, Jianping
    Liu, Xinwang
    Liao, Qing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 10
  • [29] Multiple Kernel k-Means With Low-Rank Neighborhood Kernel
    Ou, Qiyuan
    Gao, Long
    Zhu, En
    IEEE ACCESS, 2021, 9 : 3291 - 3300
  • [30] A Kernel K-means Clustering Algorithm Based on an Adaptive Mahalanobis Kernel
    Ferreira, Marcelo R. P.
    de Carvalho, Francisco de A. T.
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1885 - 1892