Secrets of GrabCut and Kernel K-means

被引:23
|
作者
Tang, Meng [1 ]
Ben Ayed, Ismail [2 ]
Marin, Dmitrii [1 ]
Boykov, Yuri [1 ]
机构
[1] Univ Western Ontario, Dept Comp Sci, London, ON N6A 3K7, Canada
[2] Univ Quebec, Ecole Technol Super, Ste Foy, PQ G1V 2M3, Canada
关键词
CUTS;
D O I
10.1109/ICCV.2015.182
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The log-likelihood energy term in popular model-fitting segmentation methods, e.g. [39, 8, 28, 10], is presented as a generalized "probabilistic" K-means energy [16] for color space clustering. This interpretation reveals some limitations, e.g. over-fitting. We propose an alternative approach to color clustering using kernel K-means energy with well-known properties such as non-linear separation and scalability to higher-dimensional feature spaces. Our bound formulation for kernel K-means allows to combine general pair-wise feature clustering methods with image grid regularization using graph cuts, similarly to standard color model fitting techniques for segmentation. Unlike histogram or GMM fitting [39, 28], our approach is closely related to average association and normalized cut. But, in contrast to previous pairwise clustering algorithms, our approach can incorporate any standard geometric regularization in the image domain. We analyze extreme cases for kernel bandwidth (e.g.Gini bias) and demonstrate effectiveness of KNN-based adaptive bandwidth strategies. Our kernel K-means approach to segmentation benefits from higher-dimensional features where standard model-fitting fails.
引用
收藏
页码:1555 / 1563
页数:9
相关论文
共 50 条
  • [1] Kernel Penalized K-means: A feature selection method based on Kernel K-means
    Maldonado, Sebastian
    Carrizosa, Emilio
    Weber, Richard
    [J]. INFORMATION SCIENCES, 2015, 322 : 150 - 160
  • [2] Fusion Multiple Kernel K-means
    Zhang, Yi
    Liu, Xinwang
    Liu, Jiyuan
    Dai, Sisi
    Zhang, Changwang
    Xu, Kai
    Zhu, En
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9109 - 9117
  • [3] Soft geodesic kernel K-MEANS
    Kim, Joehwan
    Shim, Kwang-Hyun
    Choi, Seungiin
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 429 - +
  • [4] A Kernel Iterative K-Means Algorithm
    Falkowski, Bernd-Juergen
    [J]. INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT II, 2020, 1051 : 221 - 232
  • [5] Sparse kernel k-means clustering
    Park, Beomjin
    Park, Changyi
    Hong, Sungchul
    Choi, Hosik
    [J]. JOURNAL OF APPLIED STATISTICS, 2024,
  • [6] Kernel Probabilistic K-Means Clustering
    Liu, Bowen
    Zhang, Ting
    Li, Yujian
    Liu, Zhaoying
    Zhang, Zhilin
    [J]. SENSORS, 2021, 21 (05) : 1 - 16
  • [7] The kernel rough k-means algorithm
    Meng W.
    Hongyan D.
    Shiyuan Z.
    Zhankui D.
    Zige W.
    [J]. Recent Advances in Computer Science and Communications, 2020, 13 (02) : 234 - 239
  • [8] Kernel K-means for categorical data
    Couto, J
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 46 - 56
  • [9] Discrete Multiple Kernel k-means
    Wang, Rong
    Lu, Jitao
    Lu, Yihang
    Nie, Feiping
    Li, Xuelong
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3111 - 3117
  • [10] On the Existence of Kernel Function for Kernel-Trick of k-Means
    Klopotek, Mieczyslaw A.
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2017, 2017, 10352 : 97 - 104