CAN Bus Intrusion Detection Based on Auxiliary Classifier GAN and Out-of-distribution Detection

被引:20
|
作者
Zhao, Qingling [1 ,2 ]
Chen, Mingqiang [1 ,2 ]
Gu, Zonghua [3 ]
Luan, Siyu [3 ]
Zeng, Haibo [4 ]
Chakrabory, Samarjit [5 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Key Lab Intelligent Percept & Syst High Dimens In, Minist Educ,PCA Lab, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing 210094, Jiangsu, Peoples R China
[3] Umea Univ, Dept Appl Phys & Elect, S-90187 Umea, Sweden
[4] Virginia Tech, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[5] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Automotive security; controller area network; intrusion detection; deep learning; GAN; DETECTION SYSTEM; ANOMALY DETECTION; FD MESSAGES; NETWORKS;
D O I
10.1145/3540198
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle's attack surface. We address the problem of Intrusion Detection on the CAN bus and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrates that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Out-of-distribution detection based on multi-classifiers
    Jiang, Weijie
    Yu, Yuanlong
    COGNITIVE COMPUTATION AND SYSTEMS, 2023, 5 (02) : 95 - 108
  • [22] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943
  • [23] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [24] Decoupling MaxLogit for Out-of-Distribution Detection
    Zhang, Zihan
    Xiang, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3388 - 3397
  • [25] Exploring the Limits of Out-of-Distribution Detection
    Fort, Stanislav
    Ren, Jie
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [28] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, : 5635 - 5662
  • [29] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [30] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    Pattern Recognition, 2025, 160