Scalable Nonparametric Multiway Data Analysis

被引:0
|
作者
Zhe, Shandian [1 ]
Xu, Zenglin [2 ]
Chu, Xinqi [3 ]
Qi, Yuan [1 ]
Park, Youngja [4 ]
机构
[1] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
[2] Univ Elect Sci & Technol China, Big Data Res Ctr, Sch Comp Sci & Engn, Chengdu, Peoples R China
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[4] IBM Thomas J Watson Res Ctr, Ossining, NY USA
关键词
MIXTURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiway data analysis deals with multiway arrays, i.e., tensors, and the goal is twofold: predicting missing entries by modeling the interactions between array elements and discovering hidden patterns, such as clusters or communities in each mode. Despite the success of existing tensor factorization approaches, they are either unable to capture nonlinear interactions, or computationally expensive to handle massive data. In addition, most of the existing methods lack a principled way to discover latent clusters, which is important for better understanding of the data. To address these issues, we propose a scalable nonparametric tensor decomposition model. It employs Dirichlet process mixture (DPM) prior to model the latent clusters; it uses local Gaussian processes (GPs) to capture nonlinear relationships and to improve scalability. An efficient online variational Bayes Expectation-Maximization algorithm is proposed to learn the model. Experiments on both synthetic and real-world data show that the proposed model is able to discover latent clusters with higher prediction accuracy than competitive methods. Furthermore, the proposed model obtains significantly better predictive performance than the state-of-the-art large scale tensor decomposition algorithm, GigaTensor, on two large datasets with billions of entries.
引用
收藏
页码:1125 / 1134
页数:10
相关论文
共 50 条
  • [31] NeuralCP: Bayesian Multiway Data Analysis with Neural Tensor Decomposition
    Bin Liu
    Lirong He
    Yingming Li
    Shandian Zhe
    Zenglin Xu
    Cognitive Computation, 2018, 10 : 1051 - 1061
  • [32] Kernelization of Tensor-Based Models for Multiway Data Analysis
    Zhao, Qibin
    Zhou, Guoxu
    Adali, Tulay
    Zhang, Liqing
    Cichocki, Andrzej
    IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (04) : 137 - 148
  • [33] NeuralCP: Bayesian Multiway Data Analysis with Neural Tensor Decomposition
    Liu, Bin
    He, Lirong
    Li, Yingming
    Zhe, Shandian
    Xu, Zenglin
    COGNITIVE COMPUTATION, 2018, 10 (06) : 1051 - 1061
  • [34] Hypergraph regularized nonnegative triple decomposition for multiway data analysis
    Liao, Qingshui
    Liu, Qilong
    Razak, Fatimah Abdul
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Nonparametric analysis of covariance for censored data
    Du, YL
    Akritas, MG
    Van Keilegom, I
    BIOMETRIKA, 2003, 90 (02) : 269 - 287
  • [36] Bayesian Nonparametric Longitudinal Data Analysis
    Quintana, Fernando A.
    Johnson, Wesley O.
    Waetjen, L. Elaine
    Gold, Ellen B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) : 1168 - 1181
  • [37] Heterogeneity in panel data and in nonparametric analysis
    Li, Qi
    Li, Tong
    JOURNAL OF ECONOMETRICS, 2015, 188 (02) : 313 - 315
  • [38] Nonparametric Analysis of Clustered Multivariate Data
    Nevalainen, Jaakko
    Larocque, Denis
    Oja, Hannu
    Porsti, Ilkka
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 864 - 872
  • [39] Nonparametric analysis for trinary sensory data
    Best, DJ
    Rayner, JCW
    JOURNAL OF SENSORY STUDIES, 2001, 16 (03) : 249 - 260
  • [40] Nonparametric data analysis in identification problem
    Korneeva, Anna A.
    Sergeeva, Natalya A.
    Chzhan, Ekaterina A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2013, 22 (01): : 86 - 95