Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates

被引:8
|
作者
Beheshti, Alireza [1 ]
机构
[1] Univ Guilan, Dept Mech Engn, Rasht 4199613776, Iran
关键词
Plate bending; FEM; Kirchhoff-Love model; Hermite polynomials; SELECTIVE INTEGRATION TECHNIQUES;
D O I
10.1007/s00466-018-1559-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.
引用
收藏
页码:1199 / 1211
页数:13
相关论文
共 50 条
  • [11] Finite-strain quadrilateral shell element based on discrete Kirchhoff-Love constraints
    Areias, PMA
    Song, JH
    Belytschko, T
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (09) : 1166 - 1206
  • [12] Piezo-ElectroMechanical (PEM) Kirchhoff-Love plates
    Alessandroni, Silvio
    Andreaus, Ugo
    Dell'Isola, Francesco
    Porfiri, Maurizio
    European Journal of Mechanics, A/Solids, 1600, 23 (04): : 689 - 702
  • [13] A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love plates
    Chen, Syuan-Mu
    Wu, Chih-Ping
    Wang, Yung-Ming
    COMPUTATIONAL MECHANICS, 2011, 47 (04) : 425 - 453
  • [14] Signorini's problem in the Kirchhoff-Love theory of plates
    Paumier, JC
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (06) : 567 - 570
  • [15] Size-dependent axisymmetric bending analysis of modified gradient elastic Kirchhoff-Love plates
    Zhou, Yucheng
    Huang, Kefu
    ACTA MECHANICA, 2024, 235 (09) : 5765 - 5788
  • [16] THE LINEAR SAMPLING METHOD FOR KIRCHHOFF-LOVE INFINITE PLATES
    Bourgeois, Laurent
    Recoquillay, Arnaud
    INVERSE PROBLEMS AND IMAGING, 2020, 14 (02) : 363 - 384
  • [17] Piezo-ElectroMechanical (PEM) Kirchhoff-Love plates
    Alessandroni, S
    Andreaus, U
    dell'Isola, F
    Porfiri, M
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2004, 23 (04) : 689 - 702
  • [18] Modal Synthesis with the Isogeometric Kirchhoff-Love Shell Elements
    Lei, Zhen
    Gillot, Frederic
    Jezequel, Louis
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (02)
  • [19] Bending moment mixed method for the Kirchhoff-Love plate model
    Amara, M
    Capatina-Papaghiuc, D
    Chatti, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (05) : 1632 - 1649
  • [20] Discrete Kirchhoff-Love shell quadrilateral finite element designed from cubic Hermite edge curves and Coons surface patch
    Veldin, Tomo
    Brank, Bostjan
    Brojan, Miha
    THIN-WALLED STRUCTURES, 2021, 168