A VLSI neuromorphic device for implementing spike-based neural networks

被引:5
|
作者
Indiveri, Giacomo [1 ]
Chicca, Elisabetta [1 ]
机构
[1] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland
来源
NEURAL NETS WIRN11 | 2011年 / 234卷
关键词
Neuromorphic circuits; Integrate-and-Fire (I&F) neuron; synapse; Winner-Take-All (WTA); Address-Event Representation (AER); spike-based plasticity; STDP; learning; RECURRENT NETWORK; NEURONS; SIMULATION; INFRASTRUCTURE; SELECTION; SYNAPSES; MODEL;
D O I
10.3233/978-1-60750-972-1-305
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a neuromorphic VLSI device which comprises hybrid analog/digital circuits for implementing networks of spiking neurons. Each neuron integrates input currents from a row of multiple analog synaptic circuit. The synapses integrate incoming spikes, and produce output currents which have temporal dynamics analogous to those of biological post synaptic currents. The VLSI device can be used to implement real-time models of cortical networks, as well as real-time learning and classification tasks. We describe the chip architecture and the analog circuits used to implement the neurons and synapses. We describe the functionality of these circuits and present experimental results demonstrating the network level functionality.
引用
下载
收藏
页码:305 / 316
页数:12
相关论文
共 50 条
  • [31] Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip
    Yao M.
    Richter O.
    Zhao G.
    Qiao N.
    Xing Y.
    Wang D.
    Hu T.
    Fang W.
    Demirci T.
    De Marchi M.
    Deng L.
    Yan T.
    Nielsen C.
    Sheik S.
    Wu C.
    Tian Y.
    Xu B.
    Li G.
    Nature Communications, 15 (1)
  • [32] Implementing artificial neural networks in analogue VLSI
    Woodburn, R
    Murray, AF
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 658 - 661
  • [33] A neuromorphic VLSI device for implementing 2-D selective attention systems
    Indiveri, G
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (06): : 1455 - 1463
  • [34] Dependence of rapid spike-based neural learning upon neural parameters
    David H Staelin
    Keith T Herring
    Carl H Staelin
    BMC Neuroscience, 12 (Suppl 1)
  • [35] Construction of a Spike-Based Memory Using Neural-Like Logic Gates Based on Spiking Neural Networks on SpiNNaker
    Ayuso-Martinez, Alvaro
    Casanueva-Morato, Daniel
    Dominguez-Morales, J. P.
    Jimenez-Fernandez, Angel
    Jimenez-Moreno, Gabriel
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2023, 11 (04) : 868 - 881
  • [36] A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic Hardware
    Rao, Arjun
    Plank, Philipp
    Wild, Andreas
    Maass, Wolfgang
    NATURE MACHINE INTELLIGENCE, 2022, 4 (05) : 467 - 479
  • [37] A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic Hardware
    Arjun Rao
    Philipp Plank
    Andreas Wild
    Wolfgang Maass
    Nature Machine Intelligence, 2022, 4 : 467 - 479
  • [38] A neuromorphic cortical-layer microchip for spike-based event processing vision systems
    Serrano-Gotarredona, Rafael
    Serrano-Gotarredona, Teresa
    Acosta-Jimenez, Antonio
    Linares-Barranco, Bernabe
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (12) : 2548 - 2566
  • [39] Feature competition in a spike-based winner-take-all VLSI network
    Liu, Shih-Chii
    Oster, Matthias
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 3634 - +
  • [40] A neuromorphic VLSI design for spike timing and rate based synaptic plasticity
    Azghadi, Mostafa Rahimi
    Al-Sarawi, Said
    Abbott, Derek
    Iannella, Nicolangelo
    NEURAL NETWORKS, 2013, 45 : 70 - 82