Automated Image Registration for Knee Pain Prediction in Osteoarthritis: Data from the OAI

被引:0
|
作者
Galvan-Tejada, Jorge I. [1 ]
Galvan-Tejada, Carlos E. [1 ]
Celaya-Padilla, Jose M. [1 ]
Delgado-Contreras, Juan R. [2 ]
Cervantes, Daniel [1 ]
Ortiz, Manuel [1 ,2 ]
机构
[1] Univ Autonoma Zacatecas, Unidad Acad Ingn Elect, Zacatecas, Zacatecas, Mexico
[2] Inst Tecnol Super Zacetcas Sur, Tlaltenango, Zacatecas, Mexico
来源
关键词
Osteoarthritis; Knee pain; K & L; Image registration; RADIOGRAPHIC FEATURES; SYMPTOMS; DISEASE;
D O I
10.1007/978-3-319-39393-3_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diagnose Knee osteoarthritis (OA) is a very important task, in this work an automated metrics method is used to predict chronic pain. In early stages of OA, changes into joint structures are shown, some of the most common symptoms are; formation of osteophytes, cartilage degradation and joint space reduction, among others. Using public data from the Osteoarthritis initiative (OAI), a set of X-ray images with different Kellgren Lawrence score (K & L) scores were used to determine a relationship between bilateral asymmetry and the radiological evaluation in K & L score with the chronic knee pain. In order to measure the asymmetry between the knees, the right knee was registered to match the left knee, then a series of similarity metrics; mutual information, correlation, and mean square error were computed to correlate the deformation (mismatch) and K & L score with chronic knee pain. Radiological information was evaluated and scored by OAI radiologist groups, all metric of image registration were obtained in an automated way. The results of the study suggest an association between image registration metrics, radiological K & L score with chronic knee pain. Four GLM models wit AUC 0.6 and 0.7 accuracy random forest classification model was formed with this information to classify the early bony changes with OA chronic knee pain.
引用
收藏
页码:335 / 345
页数:11
相关论文
共 50 条
  • [41] THE PREVALENCE AND IMPACT OF FOOT PAIN IN PEOPLE WITH KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Paterson, K. L.
    Hinman, R. S.
    Hunter, D. J.
    Wrigley, T. V.
    Bennell, K. L.
    OSTEOARTHRITIS AND CARTILAGE, 2015, 23 : A328 - A328
  • [42] PHYSICAL INACTIVITY CHARACTERISTICS: DATA FROM THE OSTEOARTHRITIS INITIATIVE (OAI)
    Lee, J.
    Song, J.
    Hootman, J.
    Semanik, P.
    Chang, R.
    Sharma, L.
    Van Horn, L.
    Bathon, J.
    Eaton, C.
    Hochberg, M.
    Jackson, R.
    Kwoh, C.
    Mysiw, W.
    Nevitt, M.
    Dunlop, D.
    OSTEOARTHRITIS AND CARTILAGE, 2011, 19 : S148 - S149
  • [43] A pilot study of peripheral blood DNA methylation models as predictors of knee osteoarthritis radiographic progression: data from the Osteoarthritis Initiative (OAI)
    Dunn, Christopher M.
    Nevitt, Michael C.
    Lynch, John A.
    Jeffries, Matlock A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] Eight-year trajectories of changes in health-related quality of life in knee osteoarthritis: Data from the Osteoarthritis Initiative (OAI)
    Tormalehto, Soili
    Aarnio, Emma
    Mononen, Mika E.
    Arokoski, Jari P. A.
    Korhonen, Rami K.
    Martikainen, Janne A.
    PLOS ONE, 2019, 14 (07):
  • [45] THE MTDNA HAPLOGROUPS INFLUENCE THE RADIOGRAPHIC PROGRESSION OF KNEE OSTEOARTHRITIS. DATA FROM CHECK REPLICATE OAI RESULTS
    Soto-Hermida, A.
    Fernandez-Moreno, M.
    Vazquez-Mosquera, M.
    Cortes-Pereira, E.
    Relano-Fernandez, S.
    Fernandez-Tajes, J.
    Oreiro-Villar, N.
    Fernandez-Lopez, C.
    Rego-Perez, I.
    Blanco, F.
    OSTEOARTHRITIS AND CARTILAGE, 2015, 23 : A192 - A192
  • [46] A pilot study of peripheral blood DNA methylation models as predictors of knee osteoarthritis radiographic progression: data from the Osteoarthritis Initiative (OAI)
    Christopher M. Dunn
    Michael C. Nevitt
    John A. Lynch
    Matlock A. Jeffries
    Scientific Reports, 9
  • [47] The Association of Diabetes with Knee Pain Severity and Distribution in People with Knee Osteoarthritis using Data from the Osteoarthritis Initiative
    Aqeel M. Alenazi
    Mohammed M. Alshehri
    Shaima Alothman
    Bader A. Alqahtani
    Jason Rucker
    Neena Sharma
    Neil A. Segal
    Saad M. Bindawas
    Patricia M. Kluding
    Scientific Reports, 10
  • [48] Wide Association Study of Radiological Features that Predict Future Knee OA Pain: Data from the OAI
    Galvan-Tejada, Jorge I.
    Celaya-Padilla, Jose M.
    Martinez-Torteya, Antonio
    Rodriguez-Rojas, Juan
    Trevino, Victor
    Tamez-Pena, Jose G.
    MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
  • [49] The Association of Diabetes with Knee Pain Severity and Distribution in People with Knee Osteoarthritis using Data from the Osteoarthritis Initiative
    Alenazi, Aqeel M.
    Alshehri, Mohammed M.
    Alothman, Shaima
    Alqahtani, Bader A.
    Rucker, Jason
    Sharma, Neena
    Segal, Neil A.
    Bindawas, Saad M.
    Kluding, Patricia M.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [50] Quantification of cartilage loss in local regions of knee joints using semi-automated segmentation software: analysis of longitudinal data from the Osteoarthritis Initiative (OAI)
    Iranpour-Boroujeni, T.
    Watanabe, A.
    Bashtar, R.
    Yoshioka, H.
    Duryea, J.
    OSTEOARTHRITIS AND CARTILAGE, 2011, 19 (03) : 309 - 314