Resource Scheduling in Cloud Computing Based on a Hybridized Whale Optimization Algorithm

被引:61
|
作者
Strumberger, Ivana [1 ]
Bacanin, Nebojsa [1 ]
Tuba, Milan [1 ]
Tuba, Eva [1 ]
机构
[1] Singidunum Univ, Fac Informat & Comp, Danijelova 32, Belgrade 11010, Serbia
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 22期
关键词
cloud computing; resource scheduling; metaheuristics; swarm intelligence; whale optimization algorithm; hybridization; TREE GROWTH ALGORITHM; ELEPHANT HERDING OPTIMIZATION; FIREFLY ALGORITHM; SEEKER OPTIMIZATION; COLONY; ABC; ENVIRONMENT; BEHAVIOR; GSA;
D O I
10.3390/app9224893
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cloud computing paradigm, as a novel computing resources delivery platform, has significantly impacted society with the concept of on-demand resource utilization through virtualization technology. Virtualization enables the usage of available physical resources in a way that multiple end-users can share the same underlying hardware infrastructure. In cloud computing, due to the expectations of clients, as well as on the providers side, many challenges exist. One of the most important nondeterministic polynomial time (NP) hard challenges in cloud computing is resource scheduling, due to its critical impact on the cloud system performance. Previously conducted research from this domain has shown that metaheuristics can substantially improve cloud system performance if they are used as scheduling algorithms. This paper introduces a hybridized whale optimization algorithm, that falls into the category of swarm intelligence metaheuristics, adapted for tackling the resource scheduling problem in cloud environments. To more precisely evaluate performance of the proposed approach, original whale optimization was also adapted for resource scheduling. Considering the two most important mechanisms of any swarm intelligence algorithm (exploitation and exploration), where the efficiency of a swarm algorithm depends heavily on their adjusted balance, the original whale optimization algorithm was enhanced by addressing its weaknesses of inappropriate exploitation-exploration trade-off adjustments and the premature convergence. The proposed hybrid algorithm was first tested on a standard set of bound-constrained benchmarks with the goal to more accurately evaluate its performance. After, simulations were performed using two different resource scheduling models in cloud computing with real, as well as with artificial data sets. Simulations were performed on the robust CloudSim platform. A hybrid whale optimization algorithm was compared with other state-of-the-art metaheurisitcs and heuristics, as well as with the original whale optimization for all conducted experiments. Achieved results in all simulations indicate that the proposed hybrid whale optimization algorithm, on average, outperforms the original version, as well as other heuristics and metaheuristics. By using the proposed algorithm, improvements in tackling the resource scheduling issue in cloud computing have been established, as well enhancements to the original whale optimization implementation.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Prioritized Energy Efficient Task Scheduling Algorithm in Cloud Computing Using Whale Optimization Algorithm
    Mangalampalli, Sudheer
    Swain, Sangram Keshari
    Mangalampalli, Vamsi Krishna
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 126 (03) : 2231 - 2247
  • [22] SLA Aware Task-Scheduling Algorithm in Cloud Computing Using Whale Optimization Algorithm
    Mangalampalli S.
    Swain S.K.
    Karri G.R.
    Mishra S.
    Scientific Programming, 2023, 2023
  • [23] Prioritized Energy Efficient Task Scheduling Algorithm in Cloud Computing Using Whale Optimization Algorithm
    Sudheer Mangalampalli
    Sangram Keshari Swain
    Vamsi Krishna Mangalampalli
    Wireless Personal Communications, 2022, 126 : 2231 - 2247
  • [24] A Resource Scheduling Algorithm Based on Trust Degree in Cloud Computing
    Xie, Mingshan
    Huang, Mengxing
    Wan, Bing
    SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS 2012, 2012, 430 : 177 - 184
  • [25] An Optimal Algorithm for Resource Scheduling in Cloud Computing
    Li, Qiang
    ADVANCES IN MULTIMEDIA, SOFTWARE ENGINEERING AND COMPUTING, VOL 2, 2011, 129 : 293 - 299
  • [26] The optimizing resource allocation and task scheduling based on cloud computing and Ant Colony Optimization Algorithm
    Su, Yingying
    Bai, Zhichao
    Xie, Dongbing
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 15 (Suppl 1) : 205 - 205
  • [27] Agricultural information resource scheduling algorithm based on firefly algorithm in cloud computing
    Ren, Chang'an
    Luo, Qingyun
    Zhao, Jinguo
    Huang, Yinzhen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (06) : 7437 - 7448
  • [28] Task scheduling optimization in cloud computing based on heuristic Algorithm
    Guo, L. (kftjh@yahoo.com.cn), 1600, Academy Publisher (07):
  • [29] MCWOA Scheduler: Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing
    Chandrashekar, Chirag
    Krishnadoss, Pradeep
    Poornachary, Vijayakumar Kedalu
    Ananthakrishnan, Balasundaram
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (02): : 2593 - 2616
  • [30] Multi objective trust aware task scheduling algorithm in cloud computing using whale optimization
    Mangalampalli, Sudheer
    Karri, Ganesh Reddy
    Kose, Utku
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (02) : 791 - 809