Resource Scheduling in Cloud Computing Based on a Hybridized Whale Optimization Algorithm

被引:61
|
作者
Strumberger, Ivana [1 ]
Bacanin, Nebojsa [1 ]
Tuba, Milan [1 ]
Tuba, Eva [1 ]
机构
[1] Singidunum Univ, Fac Informat & Comp, Danijelova 32, Belgrade 11010, Serbia
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 22期
关键词
cloud computing; resource scheduling; metaheuristics; swarm intelligence; whale optimization algorithm; hybridization; TREE GROWTH ALGORITHM; ELEPHANT HERDING OPTIMIZATION; FIREFLY ALGORITHM; SEEKER OPTIMIZATION; COLONY; ABC; ENVIRONMENT; BEHAVIOR; GSA;
D O I
10.3390/app9224893
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cloud computing paradigm, as a novel computing resources delivery platform, has significantly impacted society with the concept of on-demand resource utilization through virtualization technology. Virtualization enables the usage of available physical resources in a way that multiple end-users can share the same underlying hardware infrastructure. In cloud computing, due to the expectations of clients, as well as on the providers side, many challenges exist. One of the most important nondeterministic polynomial time (NP) hard challenges in cloud computing is resource scheduling, due to its critical impact on the cloud system performance. Previously conducted research from this domain has shown that metaheuristics can substantially improve cloud system performance if they are used as scheduling algorithms. This paper introduces a hybridized whale optimization algorithm, that falls into the category of swarm intelligence metaheuristics, adapted for tackling the resource scheduling problem in cloud environments. To more precisely evaluate performance of the proposed approach, original whale optimization was also adapted for resource scheduling. Considering the two most important mechanisms of any swarm intelligence algorithm (exploitation and exploration), where the efficiency of a swarm algorithm depends heavily on their adjusted balance, the original whale optimization algorithm was enhanced by addressing its weaknesses of inappropriate exploitation-exploration trade-off adjustments and the premature convergence. The proposed hybrid algorithm was first tested on a standard set of bound-constrained benchmarks with the goal to more accurately evaluate its performance. After, simulations were performed using two different resource scheduling models in cloud computing with real, as well as with artificial data sets. Simulations were performed on the robust CloudSim platform. A hybrid whale optimization algorithm was compared with other state-of-the-art metaheurisitcs and heuristics, as well as with the original whale optimization for all conducted experiments. Achieved results in all simulations indicate that the proposed hybrid whale optimization algorithm, on average, outperforms the original version, as well as other heuristics and metaheuristics. By using the proposed algorithm, improvements in tackling the resource scheduling issue in cloud computing have been established, as well enhancements to the original whale optimization implementation.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Cloud Computing Task Scheduling Model Based on Improved Whale Optimization Algorithm
    Jia, LiWei
    Li, Kun
    Shi, Xiaoming
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [2] Resource allocation optimization in cloud computing using the whale optimization algorithm
    Hosseini, Seyed Hasan
    Vahidi, Javad
    Tabbakh, Seyed Reza Kamel
    Shojaei, Ali Asghar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 343 - 360
  • [3] Evaluation of cloud computing resource scheduling based on improved optimization algorithm
    Yu, Huafeng
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (04) : 1817 - 1822
  • [4] Evaluation of cloud computing resource scheduling based on improved optimization algorithm
    Huafeng Yu
    Complex & Intelligent Systems, 2021, 7 : 1817 - 1822
  • [5] Optimization of resource scheduling based on genetic algorithm in cloud computing environment
    Ye, Huaqiao
    Metallurgical and Mining Industry, 2015, 7 (06): : 386 - 391
  • [6] Enhanced Whale Optimization Algorithm for task scheduling in cloud computing environments
    Zhang, Yanfeng
    Wang, Jiawei
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [7] A Resource Scheduling Algorithm of Cloud Computing based on Energy Efficient Optimization Methods
    Luo, Liang
    Wu, Wenjun
    Di, Dichen
    Zhang, Fei
    Yan, Yizhou
    Mao, Yaokuan
    2012 INTERNATIONAL GREEN COMPUTING CONFERENCE (IGCC), 2012,
  • [8] Performance Analysis of Cloud Computing Resource Scheduling Optimization Based on IPSO Algorithm
    Chunqiong, Wu
    Engineering Intelligent Systems, 2021, 29 (06): : 395 - 401
  • [9] An Energy-Efficient Resource Scheduling Algorithm for Cloud Computing based on Resource Equivalence Optimization
    Mao, Li
    Qi, De Yu
    Lin, Wei Wei
    Liu, Bo
    Da Li, Ye
    INTERNATIONAL JOURNAL OF GRID AND HIGH PERFORMANCE COMPUTING, 2016, 8 (02) : 43 - 57
  • [10] Parallel Enhanced Whale Optimization Algorithm for Independent Tasks Scheduling on Cloud Computing
    Khan, Zulfiqar Ali
    Aziz, Izzatdin Abdul
    Osman, Nurul Aida Bt
    Nabi, Said
    IEEE ACCESS, 2024, 12 : 23529 - 23548