Design by extension and inheritance of behavior in dynamical systems

被引:0
|
作者
Secchi, Cristian [1 ]
Bonfe, Marcello [2 ]
Fantuzzi, Cesare [1 ]
机构
[1] Univ Modena & Reggio Emilia, DISMI, I-41100 Reggio Emilia, Italy
[2] Univ Ferrara, ENDIF, I-44100 Ferrara, Italy
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper introduces a formal definition of inheritance, which is a cardinal concept in object-oriented software, for dynamical systems. The proposed definition exploits the coalgebraic description of software artifacts to provide a connection between the behavioral approach for modeling dynamical systems and the object-oriented approach for software modeling and design. This definition allows to apply the design by extension methodology, widely used in software engineering, to the design of components of manufacturing systems.
引用
收藏
页码:6704 / +
页数:2
相关论文
共 50 条
  • [21] On the asymptotical behavior of nonautonomous dynamical systems
    Wang, YJ
    Li, DS
    Kloeden, PE
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) : 35 - 53
  • [22] Stabilization of the chaotic behavior of dynamical systems
    A. Yu. Loskutov
    A. R. Dzhanoev
    Doklady Physics, 2003, 48 : 580 - 582
  • [23] L-SYSTEMS WITH INHERITANCE - AN OBJECT-ORIENTED EXTENSION OF L-SYSTEMS
    BOROVIKOV, IA
    SIGPLAN NOTICES, 1995, 30 (05): : 43 - 60
  • [24] Design Theory for Dynamical Systems with Semiosis
    Sawaragi, Tetsuo
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 346 - 351
  • [25] Existence of an Invariant Torus for a Degenerate Linear Extension of Dynamical Systems
    Korol’ Y.Y.
    Journal of Mathematical Sciences, 2017, 223 (3) : 273 - 284
  • [26] A Dynamic Mode Decomposition Extension for the Forecasting of Parametric Dynamical Systems
    Andreuzzi, Francesco
    Demo, Nicola
    Rozza, Gianluigi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 2432 - 2458
  • [27] Natural extension of fast-slow decomposition for dynamical systems
    Rubin, J. E.
    Krauskopf, B.
    Osinga, H. M.
    PHYSICAL REVIEW E, 2018, 97 (01):
  • [28] ASYMPTOTIC BEHAVIOR OF A CLASS OF ABSTRACT DYNAMICAL SYSTEMS
    SLEMROD, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 7 (03) : 584 - &
  • [29] Behavior of dynamical systems in the regime of transient chaos
    G. B. Astaf’ev
    A. A. Koronovskii
    A. E. Khramov
    Technical Physics Letters, 2003, 29 : 923 - 926
  • [30] Multidimensional Discrete Dynamical Systems with Slow Behavior
    Solis, Francisco J.
    Chen-Charpentier, Benito M.
    Kojouharov, Hristo V.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 645 - 656