Dynamics and transport properties of Floquet topological edge modes in coupled photonic waveguides

被引:12
|
作者
Petracek, J. [1 ,2 ]
Kuzmiak, V [3 ]
机构
[1] Brno Univ Technol, Fac Mech Engn, Inst Phys Engn, Tech 2, Brno 61669, Czech Republic
[2] Brno Univ Technol, Cent European Inst Technol, Purkynova 656-123, Brno 61200, Czech Republic
[3] Acad Sci Czech Republ, Inst Photon & Elect, Vvi, Chaberska 57, Prague 18251 8, Czech Republic
关键词
D O I
10.1103/PhysRevA.101.033805
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study theoretically the Floquet edge states in a photonic analog of the driven Su-Schrieffer-Heeger model implemented by an array of identical single-mode dielectric waveguides, where the time-dependent driving is modeled by periodically bended waveguides. We combine the coupled-mode theory with the Floquet-Bloch analysis and within this framework determine a band structure of the periodic system. We develop a theoretical approach for calculation of the edge states in semi-infinite systems and investigate their topological properties. In particular, we explore the dynamics of the 0- and pi-edge states which reveal profound differences depending on their topological phase. To verify our observations, we simulate the power transport along the end of such a waveguide array and show that its spectra can be assigned to the excitation of the edge modes. The results obtained indicate that driving-induced topological properties of the edge modes can be exploited in controlling flow of light in periodically driven photonic structures and may provide insight into Floquet engineering of the realistic photonic systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Coupled dielectric waveguides with photonic crystal properties
    Popov, I. Yu.
    Trifanov, A. I.
    Trifanova, E. S.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (11) : 1830 - 1836
  • [22] Coupled dielectric waveguides with photonic crystal properties
    I. Yu. Popov
    A. I. Trifanov
    E. S. Trifanova
    Computational Mathematics and Mathematical Physics, 2010, 50 : 1830 - 1836
  • [23] Lattice topological edge and corner modes of photonic crystal slabs
    Zhang, Z.
    You, J. W.
    Lan, Z.
    Panoiu, N. C.
    JOURNAL OF OPTICS, 2021, 23 (09)
  • [24] Topological Control of Bloch Oscillations of Edge Modes in Photonic Lattices
    Plotnik, Y.
    Bandres, M. A.
    Lumer, Y.
    Rechtsman, M. C.
    Segev, M.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [25] Properties of trapped electromagnetic modes in coupled waveguides
    Annino, G
    Yashiro, H
    Cassettari, M
    Martinelli, M
    PHYSICAL REVIEW B, 2006, 73 (12):
  • [26] Topological edge modes and elastic wave pumping leveraging phononics waveguides
    Riva, E.
    Rosa, M. I. N.
    Ruzzene, M.
    Cazzulani, G.
    2019 THIRTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS)), 2019, : 339 - 341
  • [27] Properties of the slab modes in photonic crystal optical waveguides
    Adibi, A
    Xu, Y
    Lee, RK
    Yariv, A
    Scherer, A
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2000, 18 (11) : 1554 - 1564
  • [28] Optical properties of leaky modes of photonic crystal waveguides
    Zhang, Hao
    Zhu, Heyuan
    Qian, Liejia
    Fan, Dianyuan
    Fu, Xiquan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (05) : 2118 - 2123
  • [29] Floquet topological systems with flat bands: Edge modes, Berry curvature, and orbital magnetization
    Dag, Ceren B.
    Mitra, Aditi
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [30] Dynamics Reflect Gapless Edge Modes for Topological Superconductor
    Zhao, Xiaolong
    Li, Ming
    Qiu, Tianhui
    Chen, Libo
    Ma, Yulin
    Ma, Hongyang
    Yi, Xuexi
    ANNALEN DER PHYSIK, 2022, 534 (11)