FAST OBJECT TRACKING USING COLOR HISTOGRAMS AND PATCH DIFFERENCES

被引:0
|
作者
Lee, Dae-Youn [1 ]
Sim, Jae-Young [2 ]
Kim, Chang-Su [1 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul, South Korea
[2] Ulsan Natl Inst Sci & Technol, Sch Elect & Comp Engn, Ulsan, South Korea
关键词
Object tracking; appearance model; k-nearest neighbor; tracking-by-detection; mean shift localization;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
A fast visual object tracking algorithm using novel object appearance models is proposed in this work. We develop a color histogram model and a patch difference model to extract color and texture feature vectors, respectively. Then, we apply k-nearest neighbor classifiers to the color and texture feature vectors and obtain the foreground probability map. We then perform a hierarchical mean shift process on the map to identify the object window. Experimental results demonstrate that proposed algorithm outperforms the conventional algorithms in terms of both tracking accuracy and processing speed.
引用
下载
收藏
页码:3905 / 3908
页数:4
相关论文
共 50 条
  • [21] Tracking objects and faces using color histograms enhanced with specularity detection
    Park, JB
    Yoon, Y
    2004 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, VOLS 1 AND 2, 2004, : 975 - 980
  • [22] Object tracking using color interest points
    Gabriel, R
    Hayet, JB
    Piater, J
    Verly, J
    AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 159 - 164
  • [23] Object recognition and pose estimation for robotic manipulation using color cooccurrence histograms
    Ekvall, S
    Hoffmann, F
    Kragic, D
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 1284 - 1289
  • [24] Object recognition and pose estimation using color cooccurrence histograms and geometric modeling
    Ekvall, S
    Kragic, D
    Hoffmann, F
    IMAGE AND VISION COMPUTING, 2005, 23 (11) : 943 - 955
  • [25] Single Object Tracking System using Fast Compressive Tracking
    Tahir, Abdullah
    Azam, Shoaib
    Sagabala, Sujani
    Jeon, Moongu
    Jeha, Ryu
    2016 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2016,
  • [26] Object Tracking Using Mean Shift for Adaptive Weighted-Sum Histograms
    Nian Cai
    Nannan Zhu
    Wenting Guo
    Bingo Wing-Kuen Ling
    Han Wang
    Qingyun Dai
    Circuits, Systems, and Signal Processing, 2014, 33 : 483 - 499
  • [27] Object Tracking Using Mean Shift for Adaptive Weighted-Sum Histograms
    Cai, Nian
    Zhu, Nannan
    Guo, Wenting
    Ling, Bingo Wing-Kuen
    Wang, Han
    Dai, Qingyun
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (02) : 483 - 499
  • [28] Sparse patch-histograms for object classification in cluttered images
    Deselaers, Thomas
    Hegerath, Andre
    Keysers, Daniel
    Ney, Hermann
    PATTERN RECOGNITION, PROCEEDINGS, 2006, 4174 : 202 - 211
  • [29] Robust Object Tracking via Locality Sensitive Histograms
    He, Shengfeng
    Lau, Rynson W. H.
    Yang, Qingxiong
    Wang, Jiang
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 1006 - 1017
  • [30] Robust object tracking using an adaptive color model
    Jang, GJ
    Kweon, IS
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 1677 - 1682