Anisotropic Diffusion-based Denoising Using Residual image for Preservation of Image Details

被引:0
|
作者
Bae, GyuJin [1 ]
Cho, Sung In [1 ]
Kim, Young Hwan [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol, Dept Elect Engn, Pohang, South Korea
[2] Pohang Univ Sci & Technol, Dept Creat IT Engn, Pohang, South Korea
关键词
Image denoising; Noise reduction; Anisotropic diffusion; residual image;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an anisotropic diffusion-based approach to noise reduction, which utilizes the residual image in the wavelet domain to improve the quality of image detail preservation. In the experimental results, the proposed method improves the quality of denoised images by increasing peak signal-to-noise ratio up to 1.17 dB and structural similarity index up to 0.026.
引用
收藏
页码:52 / 53
页数:2
相关论文
共 50 条
  • [1] Diffusion-based image denoising combining curvelet and wavelet
    Ashamol, V. G.
    Sreelekha, G.
    Sathidevi, P. S.
    [J]. PROCEEDINGS OF IWSSIP 2008: 15TH INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, 2008, : 169 - 172
  • [2] Linear Hyperbolic Diffusion-Based Image Denoising Technique
    Barbu, Tudor
    [J]. NEURAL INFORMATION PROCESSING, PT III, 2015, 9491 : 471 - 478
  • [3] Anisotropic diffusion for image denoising based on diffusion tensors
    Liu, Feng
    Liu, Jingbo
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2012, 23 (03) : 516 - 521
  • [4] Image Denoising Using Generalized Anisotropic Diffusion
    Bai, Jian
    Feng, Xiang-Chu
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (07) : 994 - 1007
  • [5] Image Denoising Using Generalized Anisotropic Diffusion
    Jian Bai
    Xiang-Chu Feng
    [J]. Journal of Mathematical Imaging and Vision, 2018, 60 : 994 - 1007
  • [6] A new diffusion-based variational model for image denoising and segmentation
    Li, Fang
    Shen, Chaomin
    Pi, Ling
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) : 115 - 125
  • [7] A New Diffusion-Based Variational Model for Image Denoising and Segmentation
    Fang Li
    Chaomin Shen
    Ling Pi
    [J]. Journal of Mathematical Imaging and Vision, 2006, 26 : 115 - 125
  • [8] Image Denoising Algorithm Using Anisotropic Diffusion Based on Contourlet Transform
    Ding, Liang
    Wang, Liejun
    Jia, Zhenhong
    [J]. 2012 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY (ESIAT 2012), 2013, 14 : 529 - 534
  • [9] Fractional Anisotropic Diffusion For Image Denoising
    Chandra, Saroj Kumar
    Bajpai, Manish Kumar
    [J]. PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC 2018), 2018, : 344 - 348
  • [10] Nonlinear Fourth-Order Diffusion-Based Model for Image Denoising
    Barbu, Tudor
    [J]. SOFT COMPUTING APPLICATIONS, SOFA 2016, VOL 1, 2018, 633 : 423 - 429