Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images

被引:41
|
作者
Qureshi, Touseef Ahmad [1 ]
Gaddam, Srinivas [2 ]
Wachsman, Ashley Max [3 ]
Wang, Lixia [4 ]
Azab, Linda [1 ]
Asadpour, Vahid [5 ]
Chen, Wansu [5 ]
Xie, Yibin [1 ]
Wu, Bechien [5 ]
Pandol, Stephen Jacob [2 ]
Li, Debiao [1 ]
机构
[1] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, 116 N Robertson Blvd, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Gastroenterol, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Dept Radiol, Los Angeles, CA 90048 USA
[4] Chaoyang Hosp, Dept Radiol, Beijing, Peoples R China
[5] Southern Calif Kaiser Permanente Med Ctr, Los Angeles, CA USA
关键词
Pancreatic Ductal Adenocarcinoma (PDAC); pancreatic cancer; PDAC prediction; radiomics; machine learning; abdominal CT scans; EARLY-DIAGNOSIS; CANCER; RISK;
D O I
10.3233/CBM-210273
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND: Early stage diagnosis of Pancreatic Ductal Adenocarcinoma (PDAC) is challenging due to the lack of specific diagnostic biomarkers. However, stratifying individuals at high risk of PDAC, followed by monitoring their health conditions on regular basis, has the potential to allow diagnosis at early stages. OBJECTIVE: To stratify high risk individuals for PDAC by identifying predictive features in pre-diagnostic abdominal Computed Tomography (CT) scans. METHODS: A set of CT features, potentially predictive of PDAC, was identified in the analysis of 4000 raw radiomic parameters extracted from pancreases in pre-diagnostic scans. The naive Bayes classifier was then developed for automatic classification of CT scans of the pancreas with high risk for PDAC. A set of 108 retrospective CT scans (36 scans from each healthy control, pre-diagnostic, and diagnostic group) from 72 subjects was used for the study. Model development was performed on 66 multiphase CT scans, whereas external validation was performed on 42 venous-phase CT scans. RESULTS: The system achieved an average classification accuracy of 86% on the external dataset. CONCLUSIONS: Radiomic analysis of abdominal CT scans can unveil, quantify, and interpret micro-level changes in the pre-diagnostic pancreas and can efficiently assist in the stratification of high risk individuals for PDAC.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [11] Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma
    Hayashi, Hiromitsu
    Uemura, Norio
    Matsumura, Kazuki
    Zhao, Liu
    Sato, Hiroki
    Shiraishi, Yuta
    Yamashita, Yo-ichi
    Baba, Hideo
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (43) : 7480 - 7496
  • [12] Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma
    Hiromitsu Hayashi
    Norio Uemura
    Kazuki Matsumura
    Liu Zhao
    Hiroki Sato
    Yuta Shiraishi
    Yoichi Yamashita
    Hideo Baba
    World Journal of Gastroenterology, 2021, (43) : 7480 - 7496
  • [13] Computed tomography-based fully automated artificial intelligence model to predict extrapancreatic perineural invasion in pancreatic ductal adenocarcinoma
    Yu, Jieyu
    Chen, Chengwei
    Lu, Mingzhi
    Fang, Xu
    Li, Jing
    Zhu, Mengmeng
    Li, Na
    Yuan, Xiaohan
    Han, Yaxing
    Wang, Li
    Lu, Jianping
    Shao, Chengwei
    Bian, Yun
    INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (12) : 7656 - 7670
  • [14] Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using radiomics of diagnostic computed tomography
    Li, Xiawei
    Wan, Yidong
    Lou, Jianyao
    Xu, Lei
    Shi, Aiguang
    Yang, Litao
    Fan, Yiqun
    Yang, Jing
    Huang, Junjie
    Wu, Yulian
    Niu, Tianye
    ECLINICALMEDICINE, 2022, 43
  • [15] Quantitative Computed Tomography Analysis Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma
    Lee, Y.
    Cristini, V.
    Varadhachary, G. R.
    Katz, M.
    Wang, H.
    Bhosale, P.
    Tamm, E. P.
    Fleming, J. B.
    Koay, E. J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E199 - E199
  • [16] Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis
    Attiyeh, Marc A.
    Chakraborty, Jayasree
    Doussot, Alexandre
    Langdon-Embry, Liana
    Mainarich, Shiana
    Gonen, Mithat
    Balachandran, Vinod P.
    D'Angelica, Michael I.
    DeMatteo, Ronald P.
    Jarnagin, William R.
    Kingham, T. Peter
    Allen, Peter J.
    Simpson, Amber L.
    Do, Richard K.
    ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (04) : 1034 - 1042
  • [17] Spiral computed tomography assessment of resectability of pancreatic ductal adenocarcinoma: analysis of results
    Procacci, C
    Biasiutti, C
    Carbognin, G
    Bicego, E
    Graziani, R
    Franzoso, F
    Pesci, A
    Megibow, AJ
    DIGESTIVE AND LIVER DISEASE, 2002, 34 (10) : 739 - 747
  • [18] Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis
    Marc A. Attiyeh
    Jayasree Chakraborty
    Alexandre Doussot
    Liana Langdon-Embry
    Shiana Mainarich
    Mithat Gönen
    Vinod P. Balachandran
    Michael I. D’Angelica
    Ronald P. DeMatteo
    William R. Jarnagin
    T. Peter Kingham
    Peter J. Allen
    Amber L. Simpson
    Richard K. Do
    Annals of Surgical Oncology, 2018, 25 : 1034 - 1042
  • [19] Pancreatic steatosis on computed tomography is an early imaging feature of pre-diagnostic pancreatic cancer: A preliminary study in overweight patients
    Hoogenboom, Sanne A.
    Bolan, Candice W.
    Chuprin, Anthony
    Raimondo, Maria T.
    van Hooft, Jeanin E.
    Wallace, Michael B.
    Raimondo, Massimo
    PANCREATOLOGY, 2021, 21 (02) : 428 - 433
  • [20] Predicting Pathological Response to Preoperative Chemotherapy in Pancreatic Ductal Adenocarcinoma Using Post-Chemotherapy Computed Tomography Radiomics
    Ikuta, Shinichi
    Aihara, Tsukasa
    Nakajima, Takayoshi
    Yamanaka, Naoki
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (01)