On the quaternionic osculating direction curves

被引:1
|
作者
Kiziltug, Sezai [1 ]
Erisir, Tulay [1 ]
Mumcu, Gokhan [2 ]
机构
[1] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, TR-24002 Erzincan, Turkey
[2] Erzincan Binali Yildirim Univ, Grad Sch Nat & Appl Sci, Dept Math, TR-24002 Erzincan, Turkey
关键词
Quaternions; associated curve; quaternionic osculating direction curve; quaternionic osculating donor curve; MANNHEIM PARTNER CURVES; VOLUME CONJECTURE;
D O I
10.1142/S021988782230001X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quaternions are widely used in physics. Quaternions, an extension of complex numbers, are closely related to many fundamental concepts (e.g. Pauli matrices) in physics. The aim of this study is the geometric structure underlying the quaternions used in physics. In this paper, we have investigated a new structure of unit speed associated curves such as spatial quaternionic and quaternionic osculating direction curves. For this, we have assumed that the vector fields chi(rho) = nu(1)(rho)t(rho) + nu(2)(rho)n(rho), where nu(2)(1)(rho) + nu(2)(2)(rho) = 1 for the spatial quaternionic curve psi and chi(rho) = lambda(1)(rho) inverted perpendicular (rho) + lambda(2)(rho)eta(rho) + lambda(3)beta(2)(rho), where lambda(2)(1)(rho) + lambda(2)(2)(rho) + lambda(2)(3)(rho) = 1 for the quaternionic curve phi. Then, we have given the relationship between (spatial) quaternionic (OD)-curves and Mannheim curve pair. Moreover, we have examined in which cases the (spatial) quaternionic (OD)-curve can be helix or slant helix. So, considering that helices also take place in electron physics, it is thought that this study will create a bridge between physics and geometry. Finally, we have given the examples and draw the figures of curves in the examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Generalized planar curves and quaternionic geometry
    Hrdina, Jaroslav
    Slovak, Jan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (04) : 349 - 360
  • [32] Characterizations for the Dual Split Quaternionic Curves
    Aksoy, A. Tuna
    Coken, A. C.
    ACTA PHYSICA POLONICA A, 2017, 132 (03) : 905 - 908
  • [33] On Compact Affine Quaternionic Curves and Surfaces
    Graziano Gentili
    Anna Gori
    Giulia Sarfatti
    The Journal of Geometric Analysis, 2021, 31 : 1073 - 1092
  • [34] On generalized osculating-type curves in Myller configuration
    Isbilir, Zehra
    Tosun, Murat
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (02): : 85 - 98
  • [35] Null Quaternionic Bertrand Partner Curves
    Kahraman, Tanju
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1511 - 1515
  • [36] On the Quaternionic Normal Curves in the Euclidean Space
    Yildiz, Onder Gokmen
    Karakus, Siddika Ozkaldi
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (03): : 533 - 543
  • [37] A primer on the differential geometry of quaternionic curves
    Giardino, Sergio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14428 - 14436
  • [38] On Compact Affine Quaternionic Curves and Surfaces
    Gentili, Graziano
    Gori, Anna
    Sarfatti, Giulia
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 1073 - 1092
  • [39] Winding number and homotopy for quaternionic curves
    Giardino, Sergio
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (06)
  • [40] CHARACTERIZATIONS OF SOME SPECIAL QUATERNIONIC CURVES
    Yuecesan, Ahmet
    Tulum, Ercan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (04): : 709 - 719