Channel Estimation of IRS-Aided Communication Systems with Hybrid Multiobjective Optimization

被引:0
|
作者
Chen, Zhen [1 ]
Tang, Jie [1 ]
Tang, Hengbin [1 ]
Zhang, Xiuyin [1 ]
So, Daniel Ka Chun [2 ]
Wong, Kai-Kit [3 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou, Peoples R China
[2] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[3] UCL, Dept Elect & Elect Engn, London, England
关键词
Intelligent reflecting surface (IRS); channel estimation; millimeter wave communications; compressed sensing; hybrid evolutionary algorithm; MASSIVE MIMO; SPARSE; INFORMATION;
D O I
10.1109/ICC42927.2021.9500433
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, we propose a compressive channel estimation technique for IRS-assisted mmWave multi-input and multi-output (MIMO) system. To reduce the training overhead, the inherent sparsity in mmWave channels is exploited. By utilizing the properties of Kronecker products, IRS-assisted mmWave channel estimation are converted into a sparse signal recovery problem, which involves two competing cost function terms (measurement error and a sparsity term). Existing sparse recovery algorithms solve the combined contradictory objectives function using a regularization parameter, which leads to a suboptimal solution. To address this concern, a hybrid multiobjective evolutionary paradigm is developed to solve the sparse recovery problem, which can overcome the difficulty in the choice of regularization parameter value. Simulation results show that under a wide range of simulation settings, the proposed algorithm achieves competitive error performance compared to existing channel estimation algorithms.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Tensor-based mobile channel tracking for IRS-aided transmission systems
    Su, Ying
    Zhang, Jing
    [J]. ELECTRONICS LETTERS, 2023, 59 (13)
  • [42] An IRS-Aided GSSK Scheme for Wireless Communication System
    Zhang, Chaorong
    Peng, Yuyang
    Li, Jun
    Tong, Fei
    [J]. IEEE COMMUNICATIONS LETTERS, 2022, 26 (06) : 1398 - 1402
  • [43] Joint Mode Selection and Beamforming for IRS-Aided Maritime Cooperative Communication Systems
    Cao, Xueyan
    Hu, Xiaoling
    Peng, Mugen
    [J]. IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (01): : 57 - 69
  • [44] Robust Secure Beamforming Algorithm for IRS-Aided Terahertz Satellite Communication Systems
    Lin M.
    Li F.
    Wang Z.-N.
    Zhao B.
    Han L.
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (10): : 2715 - 2723
  • [45] Selective Reflection Control: Distributed IRS-Aided Communication With Partial Channel State Information
    Hashida, Hiroaki
    Kawamoto, Yuichi
    Kato, Nei
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (11) : 11949 - 11958
  • [46] Power Minimization for the IRS-Aided SWIPT Secure Communication System with Imperfect Cascaded Channel
    He C.
    Xu S.
    Qian G.
    Li X.
    Zhang C.
    [J]. Journal of Communications and Information Networks, 2023, 8 (02) : 133 - 140
  • [47] Beamforming Design for Active IRS-Aided MIMO Integrated Sensing and Communication Systems
    Li, Jin
    Zhou, Gui
    Gong, Tantao
    Liu, Nan
    [J]. INTERNATIONAL JOURNAL OF ACCOUNTING AND INFORMATION MANAGEMENT, 2023, 12 (10) : 1786 - 1790
  • [48] Channel Tracking and Prediction for IRS-Aided Wireless Communications
    Wei, Yi
    Zhao, Ming-Min
    Liu, An
    Zhao, Min-Jian
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 563 - 579
  • [49] Sparse Bayesian Learning-based Channel Estimation for IRS-aided Millimeter Wave Massive MIMO Systems
    Agarwal, Agrim
    Mishra, Amrita
    Das, Priyanka
    [J]. 2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [50] RSS-Based Channel Estimation for IRS-Aided Wireless Energy Transfer System
    Jung, Sangwon
    Lee, Jang-Won
    Lee, Chungyong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (19) : 14860 - 14873