POSITIVITY AND OPTIMIZATION FOR SEMI-ALGEBRAIC FUNCTIONS

被引:14
|
作者
Lasserre, Jean B. [1 ,2 ]
Putinar, Mihai [3 ]
机构
[1] Univ Toulouse, CNRS, LAAS, Toulouse, France
[2] Univ Toulouse, Inst Math, Toulouse, France
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
semi-algebraic functions; positivity; semidefinite relaxations; POLYNOMIAL OPTIMIZATION; GLOBAL OPTIMIZATION; RELAXATIONS;
D O I
10.1137/090775221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algebraic certificates of positivity for functions belonging to a finitely generated algebra of Borel measurable functions, with particular emphasis on algebras generated by semi-algebraic functions. In this case the standard global optimization problem, with constraints given by elements of the same algebra, is reduced via a natural change of variables to the better-understood case of polynomial optimization. A collection of simple examples and numerical experiments complement the theoretical parts of the article.
引用
收藏
页码:3364 / 3383
页数:20
相关论文
共 50 条
  • [21] Semi-Algebraic Functions with Non-Compact Critical Set
    Dutertre, Nicolas
    Moya Perez, Juan Antonio
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (02):
  • [22] Formal Verification of Semi-algebraic Sets and Real Analytic Functions
    Slagel, J. Tanner
    White, Lauren
    Dutle, Aaron
    [J]. CPP '21: PROCEEDINGS OF THE 10TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, 2021, : 278 - 290
  • [23] Semi-algebraic Ramsey numbers
    Suk, Andrew
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 465 - 483
  • [24] Classification of semi-algebraic p-adic sets up to semi-algebraic bijection
    Cluckers, R
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 540 : 105 - 114
  • [25] Polynomial Optimization on Some Unbounded Closed Semi-algebraic Sets
    Trang T. Du
    Toan M. Ho
    [J]. Journal of Optimization Theory and Applications, 2019, 183 : 352 - 363
  • [26] Algebraic boundaries of convex semi-algebraic sets
    Sinn, Rainer
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2015, 2 (01)
  • [27] QUOTIENTS OF SEMI-ALGEBRAIC SPACES
    SCHEIDERER, C
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (02) : 249 - 271
  • [28] Connectivity in Semi-algebraic sets
    Hong, Hoon
    [J]. 12TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2010), 2011, : 4 - 7
  • [29] COHOMOLOGY OF SEMI-ALGEBRAIC SHEAVES
    SEYDI, H
    FEDIDA, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (17): : 623 - 626
  • [30] EMBEDDING SEMI-ALGEBRAIC SPACES
    ROBSON, R
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (03) : 365 - 370