POSITIVITY AND OPTIMIZATION FOR SEMI-ALGEBRAIC FUNCTIONS

被引:14
|
作者
Lasserre, Jean B. [1 ,2 ]
Putinar, Mihai [3 ]
机构
[1] Univ Toulouse, CNRS, LAAS, Toulouse, France
[2] Univ Toulouse, Inst Math, Toulouse, France
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
semi-algebraic functions; positivity; semidefinite relaxations; POLYNOMIAL OPTIMIZATION; GLOBAL OPTIMIZATION; RELAXATIONS;
D O I
10.1137/090775221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algebraic certificates of positivity for functions belonging to a finitely generated algebra of Borel measurable functions, with particular emphasis on algebras generated by semi-algebraic functions. In this case the standard global optimization problem, with constraints given by elements of the same algebra, is reduced via a natural change of variables to the better-understood case of polynomial optimization. A collection of simple examples and numerical experiments complement the theoretical parts of the article.
引用
收藏
页码:3364 / 3383
页数:20
相关论文
共 50 条