Hyperbolic triangular prisms with one ideal vertex

被引:0
|
作者
Lakeland, Grant S. [1 ]
Roth, Corinne G. [1 ]
机构
[1] Eastern Illinois Univ, Dept Math & Comp Sci, Charleston, IL 61920 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2020年 / 13卷 / 03期
关键词
hyperbolic reflection group; prism; ideal polyhedron;
D O I
10.2140/involve.2020.13.361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify all of the five-sided three-dimensional hyperbolic polyhedra with one ideal vertex, which have the shape of a triangular prism, and which give rise to a discrete reflection group. We show how to find each such polyhedron in the upper half-space model by considering lines and circles in the plane. Finally, we give matrix generators in PSL2(C) for the orientation-preserving subgroup of each corresponding reflection group.
引用
收藏
页码:361 / 379
页数:19
相关论文
共 50 条
  • [31] Triangular mesh simplification method based on vertex classification and vertex importance
    Ning, Shurong
    Han, Lin
    Zhu, Yuan
    Journal of Information and Computational Science, 2013, 10 (15): : 4911 - 4916
  • [32] One country, two prisms
    Kuhn, RL
    FOREIGN AFFAIRS, 2006, 85 (01) : 167 - 168
  • [33] Degenerations of ideal hyperbolic triangulations
    Tillmann, Stephan
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 793 - 823
  • [34] BILLIARDS IN IDEAL HYPERBOLIC POLYGONS
    Castle, Simon
    Peyerimhoff, Norbert
    Siburg, Karl Friedrich
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) : 893 - 908
  • [35] HYPERBOLIC FLOWS IN IDEAL PLASTICITY
    PERADZYNSKI, Z
    ARCHIVES OF MECHANICS, 1975, 27 (01): : 141 - 156
  • [36] Degenerations of ideal hyperbolic triangulations
    Stephan Tillmann
    Mathematische Zeitschrift, 2012, 272 : 793 - 823
  • [37] DOI PET Detectors with Scintillation Crystals Cut as Triangular Prisms
    Inadama, Naoko
    Murayama, Hideo
    Yamaya, Taiga
    Nishikido, Fumihiko
    Shibuya, Kengo
    Yoshida, Eiji
    Tsuda, Tomoaki
    Ohmura, Atsushi
    Yazaki, Yujiro
    Osada, Hiroto
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 3217 - +
  • [38] AUTOMATIC MINERAL-DEPOSIT ASSESSMENT USING TRIANGULAR PRISMS
    WATSON, DF
    PHILIP, GM
    COMPUTERS & GEOSCIENCES, 1986, 12 (02) : 221 - 224
  • [39] The hyperbolic Ernst equation in a triangular domain
    Lenells, Jonatan
    Mauersberger, Julian
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (01)
  • [40] The hyperbolic Ernst equation in a triangular domain
    Jonatan Lenells
    Julian Mauersberger
    Analysis and Mathematical Physics, 2020, 10