AM-GCN: Adaptive Multi-channel Graph Convolutional Networks

被引:375
|
作者
Wang, Xiao [1 ]
Zhu, Meiqi [1 ]
Bo, Deyu [1 ]
Cui, Peng [2 ]
Shi, Chuan [1 ]
Pei, Jian [3 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing, Peoples R China
[3] Simon Fraser Univ, Burnaby, BC, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Graph Convolutional Networks; Network Representation Learning; Deep Learning;
D O I
10.1145/3394486.3403177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytics tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph with rich information. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. Our extensive experiments on benchmark data sets clearly show that AM-GCN extracts the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.
引用
收藏
页码:1243 / 1253
页数:11
相关论文
共 50 条
  • [31] Multi-Channel Augmented Graph Embedding Convolutional Network for Multi-View Clustering
    Lin, Renjie
    Du, Shide
    Wang, Shiping
    Guo, Wenzhong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (04): : 2239 - 2249
  • [32] Decomposition spectral graph convolutional network based on multi-channel adaptive adjacency matrix for renewable energy prediction
    Liu, Jiarui
    Fu, Yuchen
    ENERGY, 2023, 284
  • [33] MV-GCN: Multi-View Graph Convolutional Networks for Link Prediction
    Li, Zhao
    Liu, Zhanlin
    Huang, Jiaming
    Tang, Geyu
    Duan, Yucong
    Zhang, Zhiqiang
    Yang, Yifan
    IEEE ACCESS, 2019, 7 : 176317 - 176328
  • [34] MULTI-CHANNEL SPEECH ENHANCEMENT USING GRAPH NEURAL NETWORKS
    Tzirakis, Panagiotis
    Kumar, Anurag
    Donley, Jacob
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3415 - 3419
  • [35] MVMA-GCN: Multi-view multi-layer attention graph convolutional networks
    Zhang, Pengyu
    Zhang, Yong
    Wang, Jingcheng
    Yin, Baocai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [36] Enhanced Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction
    Chen, Hao
    Zhai, Zepeng
    Feng, Fangxiang
    Li, Ruifan
    Wang, Xiaojie
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2974 - 2985
  • [37] Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
    Fotiadou, Eleni
    Vullings, Rik
    FRONTIERS IN PEDIATRICS, 2020, 8
  • [38] Multi-Channel Convolutional Neural Networks for Image Super-Resolution
    Ohtani, Shinya
    Kato, Yu
    Kuroki, Nobutaka
    Hirose, Tetsuya
    Numa, Masahiro
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (02) : 572 - 580
  • [39] Image Super-Resolution with Multi-Channel Convolutional Neural Networks
    Kato, Yu
    Ohtani, Shinya
    Kuroki, Nobutaka
    Hirose, Tetsuya
    Numa, Masahiro
    2016 14TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2016,
  • [40] Inductive Bias of Multi-Channel Linear Convolutional Networks with BoundedWeight Norm
    Jagadeesan, Meena
    Razenshteyn, Ilya
    Gunasekar, Suriya
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178