Segmentation and clustering in brain MRI imaging

被引:51
|
作者
Mirzaei, Golrokh [4 ]
Adeli, Hojjat [1 ,2 ,3 ]
机构
[1] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Neurol, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Comp Sci & Engn, Marion, OH 43302 USA
关键词
clustering; convolutional neural network; FCM; K-means; segmentation; CONVOLUTIONAL NEURAL-NETWORKS; ANT COLONY OPTIMIZATION; DEEP LEARNING-MODEL; C-MEANS ALGORITHM; TUMOR SEGMENTATION; FEATURE-EXTRACTION; DAMAGE DETECTION; SWARM; CNN; DESIGN;
D O I
10.1515/revneuro-2018-0050
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Clustering is a vital task in magnetic resonance imaging (MRI) brain imaging and plays an important role in the reliability of brain disease detection, diagnosis, and effectiveness of the treatment. Clustering is used in processing and analysis of brain images for different tasks, including segmentation of brain regions and tissues (grey matter, white matter, and cerebrospinal fluid) and clustering of the atrophy in different parts of the brain. This paper presents a state-of-the-art review of brain MRI studies that use clustering techniques for different tasks.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 50 条
  • [31] A fast spatial constrained fuzzy kernel clustering algorithm for MRI brain image segmentation
    Liao, Liang
    Lin, Tu-Sheng
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 82 - 87
  • [32] Multimodal MRI Brain Tumor Image Segmentation Using Sparse Subspace Clustering Algorithm
    Liu, Li
    Kuang, Liang
    Ji, Yunfeng
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020 (2020)
  • [33] A bilateral-driven multi-centers clustering method for brain MRI segmentation
    Gao, Zhengzhou
    Liu, Bo
    Luo, Xiaoyan
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VII, 2020, 11550
  • [34] MRI Brain Image Segmentation with Supervised SOM and Probability-Based Clustering Method
    Ortiz, Andres
    Gorriz, Juan M.
    Ramirez, Javier
    Salas-Gonzalez, Diego
    NEW CHALLENGES ON BIOINSPIRED APPLICATIONS: 4TH INTERNATIONAL WORK-CONFERENCE ON THE INTERPLAY BETWEEN NATURAL AND ARTIFICIAL COMPUTATION, IWINAC 2011, PART II, 2011, 6687 : 49 - 58
  • [35] An Automatic MRI Brain Segmentation by Using Adaptive Mean-Shift Clustering Framework
    Janney, J. Bethanney
    Aarthi, A.
    Reddy, S. Rajesh Kumar
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON INTERNET COMPUTING AND INFORMATION COMMUNICATIONS (ICICIC GLOBAL 2012), 2014, 216 : 111 - 119
  • [36] An Efficient Brain Tumor Detection and Segmentation in MRI Using Parameter-Free Clustering
    Shivhare, Shiv Naresh
    Sharma, Shikhar
    Singh, Navjot
    MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 485 - 495
  • [37] Fuzzy Clustering Segmentation of Glioblastoma in T1-MRI Imaging for Clinical Trials
    Cordova, J. S.
    Schreibmann, Eduard
    Hadjipanayis, Constantinos G.
    Holder, Chad A.
    Bansal, Vivek
    Sepulveda, Julio
    Danish, Hasan
    Guo, Ying
    Fox, Tim H.
    Crocker, Ian R.
    Shu, Hui-Kuo G.
    Shim, Hyunsuk
    MEDICAL PHYSICS, 2014, 41 (06) : 188 - 188
  • [38] Segmentation of Brain Tissues from MRI Images Using Multitask Fuzzy Clustering Algorithm
    Zhao Y.
    Huang Z.
    Che H.
    Xie F.
    Liu M.
    Wang M.
    Sun D.
    Journal of Healthcare Engineering, 2023, 2023
  • [39] Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours
    Amini, L
    Soltanian-Zadeh, H
    Lucas, C
    Gity, M
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (05) : 800 - 811
  • [40] An Optimized Clustering Approach using Tree Seed Algorithm for the Brain MRI Images Segmentation
    Ghaouti, Ghazi Boumediene
    Benyahia, Samia
    Meftah, Boudjelal
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2023, 26 (72): : 44 - 59