In this paper, we study the convergence rates for homogenization problems for solutions of partial differential equations with rapidly oscillating Neumann boundary data. Such a problem raised due to its importance for higher order approximation in homogenization theory. High order approximation gives rise to the so-called boundary layer phenomenon. As a consequence, we obtain the pointwise and W-1,W-p convergence results. Our techniques are based on Fourier analysis. (C) 2015 AIP Publishing LLC.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
IMAS CONICET, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
Amster, Pablo
Rogers, Colin
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina