Homogenization of the boundary value for the Neumann problem

被引:5
|
作者
Zhao, Jie [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
D O I
10.1063/1.4909526
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the convergence rates for homogenization problems for solutions of partial differential equations with rapidly oscillating Neumann boundary data. Such a problem raised due to its importance for higher order approximation in homogenization theory. High order approximation gives rise to the so-called boundary layer phenomenon. As a consequence, we obtain the pointwise and W-1,W-p convergence results. Our techniques are based on Fourier analysis. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Homogenization of the Neumann boundary value problem: polygonal domains
    Zhao, Jie
    Wang, Juan
    Zhang, Jianlin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [2] The mesa problem for Neumann boundary value problem
    Bénilan, P
    Igbida, N
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (02) : 301 - 315
  • [3] The Neumann boundary value problem in the halfspace
    A. V. Setukha
    Differential Equations, 2000, 36 : 1296 - 1309
  • [4] HOMOGENIZATION OF THE BOUNDARY VALUE FOR THE DIRICHLET PROBLEM
    Kim, Sunghan
    Lee, Ki-Ahm
    Shahgholian, Henrik
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (12) : 6843 - 6864
  • [5] Unusual bifurcation of a Neumann boundary value problem
    Montagu, E. L.
    Norbury, John
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9175 - 9188
  • [6] Multiplicity results for the neumann boundary value problem
    Atslega, S.
    MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (02) : 179 - 186
  • [7] On the solvability of a Neumann boundary value problem at resonance
    Kuo, CC
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (04): : 464 - 470
  • [8] One theorem for the Neumann boundary value problem
    Yu. A. Klokov
    Differential Equations, 2000, 36 : 148 - 150
  • [9] One theorem for the Neumann boundary value problem
    Klokov, YA
    DIFFERENTIAL EQUATIONS, 2000, 36 (01) : 148 - 150
  • [10] A NEUMANN BOUNDARY-VALUE PROBLEM ON AN UNBOUNDED INTERVAL
    Amster, Pablo
    Deboli, Alberto
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,