Effects of substrate temperature and SnO2 high resistive layer on Sb2Se3 thin film solar cells prepared by pulsed laser deposition

被引:30
|
作者
Yang, Ke [1 ]
Li, Bing [1 ]
Zeng, Guanggen [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Sb2Se3; Solar cells; Pulsed laser deposition; Substrate temperature; SnO2; THERMAL EVAPORATION; NANORODS; GROWTH; BUFFER;
D O I
10.1016/j.solmat.2019.110381
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sb2Se3, an emerging promising binary compound semiconductor, was prepared at different substrate temperatures by pulsed laser deposition for thin film solar cells for the first time. In this work, CdS and Sb(2)Se(3 )films were subsequently deposited by pulsed laser deposition to simplify the process. Film properties and device performance, closely related to the substrate temperature, were characterized by thermal gravimetric analysis, X-ray diffraction, UV-Vis-NIR spectrophotometer, scanning electron microscope, light and dark current density-voltage, external quantum efficiency and capacitance-voltage, respectively. Results indicate that Sb2Se3 solar cells film deposited at 500 degrees C is better, with a better efficiency of 3.58%. Furthermore, SnO2 high resistive layer was introduced into Sb2Se3 solar cell to improve the junction quality, leading to a champion device efficiency of 4.41%.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells
    Mavlonov, Abdurashid
    Razykov, Takhir
    Raziq, Fazal
    Gan, Jiantuo
    Chantana, Jakapan
    Kawano, Yu
    Nishimura, Takahito
    Wei, Haoming
    Zakutayev, Andriy
    Minemoto, Takashi
    Zu, Xiaotao
    Li, Sean
    Qiao, Liang
    SOLAR ENERGY, 2020, 201 (201) : 227 - 246
  • [32] Improved stability and efficiency of CdSe/Sb2Se3 thin-film solar cells
    Guo, Liping
    Grice, Corey
    Zhang, Baiyu
    Xing, Scott
    Li, Lin
    Qian, Xiaofeng
    Yan, Feng
    SOLAR ENERGY, 2019, 188 : 586 - 592
  • [33] Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells
    Tao, Jiahua
    Hu, Xiaobo
    Xue, Juanjuan
    Wang, Youyang
    Weng, Guoen
    Chen, Shaoqiang
    Zhu, Ziqiang
    Chu, Junhao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 197 : 1 - 6
  • [34] Tailoring selenization for superior thin film and photovoltaic performance in Sb2Se3 solar cells
    Regmi, G.
    Rijal, Sangita
    Velumani, S.
    OPTICAL MATERIALS, 2025, 160
  • [35] Thickness-dependent carriers transport in Sb2Se3 thin film solar cells
    Cao, Zi-Xiu
    Liu, Chuan-Yu
    Li, Jian-Peng
    Dong, Jia-Bin
    Hu, Shi-Hao
    Wang, Wei-Huang
    Wu, Xu
    Zhang, Yi
    RARE METALS, 2025,
  • [36] Mechanisms and modification of nonlinear shunt leakage in Sb2Se3 thin film solar cells
    Shen, Kai
    Ou, Chizhu
    Huang, Tailang
    Zhu, Hongbing
    Li, Jianjun
    Li, Zhiqiang
    Mai, Yaohua
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 : 58 - 65
  • [37] Efficient and stable flexible Sb2Se3 thin film solar cells enabled by an epitaxial CdS buffer layer
    Wen, Xixing
    Lu, Zonghuan
    Wang, Gwo-Ching
    Washington, Morris A.
    Lu, Toh-Ming
    NANO ENERGY, 2021, 85
  • [38] Growth and characterization of Sb2Se3 thin films for solar cells
    Razykov, T. M.
    Shukurov, A. X.
    Atabayev, O. K.
    Kuchkarov, K. M.
    Ergashev, B.
    Mavlonov, A. A.
    SOLAR ENERGY, 2018, 173 : 225 - 228
  • [39] Optical properties of SnO2 thin films prepared by pulsed laser deposition technique
    Nihal A. AbdulWahhab
    Journal of Optics, 2020, 49 : 41 - 47
  • [40] CZTS nanoparticles as an effective hole-transport layer for Sb2Se3 thin-film solar cells
    Mu, Fangling
    Liu, Zhen
    Zi, Wei
    Cao, Yang
    Lu, Xiaoman
    Li, Yanlei
    Zhao, Zhiqiang
    Xiao, Zhenyu
    Cheng, Nian
    SOLAR ENERGY, 2021, 226 : 154 - 160