Propagation of KPP equations with advection in one-dimensional almost periodic media and its symmetry

被引:2
|
作者
Liang, Xing [1 ]
Zhou, Tao [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Anhui Univ, Sch Math Sci, Ctr Pure Math, Hefei 230601, Anhui, Peoples R China
关键词
Almost periodic media; Spreading speed; Symmetry of propagation; Generalized principal eigenvalue; SPREADING SPEEDS; TRAVELING-WAVES; PRINCIPAL EIGENVALUE; FRONT PROPAGATION; DIFFUSION; EXISTENCE; MODEL;
D O I
10.1016/j.aim.2022.108568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reaction-diffusion equations in unbounded domain are used to study the propagation phenomena of biological species. When propagation can happen in different directions, an interesting question arises: In which direction is propagation the fastest?For the one-dimensional KPP equation in almost periodic media with advection: {ut=(a(x)ux)(x)+b(x)ux+f(x,u)t > 0,x is an element of R, u(0,x)=u0(x)is an element of[0,1] is nonzero with compact support, (?) let omega(+) and omega(-) be the spreading speeds of (?) in the positive and negative directions respectively. The above question becomes this: Which is larger, omega(+) or omega(-)? In this paper, after establishing the existence of omega(+) and omega(-), we give a complete answer to this question: sgn(omega(-)-omega(+))=sgn(lim(x ->infinity)?1/x integral 0xb(s)/a(s)ds). (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations
    Nadin, Gregoire
    Rossi, Luca
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1239 - 1267
  • [2] Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations
    Grégoire Nadin
    Luca Rossi
    Archive for Rational Mechanics and Analysis, 2017, 223 : 1239 - 1267
  • [3] THE PROPAGATION OF WAVES IN ONE-DIMENSIONAL PERIODIC MEDIA
    KOROTYAEV, EL
    DOKLADY AKADEMII NAUK, 1994, 336 (02) : 171 - 174
  • [4] Spreading speeds of nonlocal KPP equations in almost periodic media
    Liang, Xing
    Zhou, Tao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (09)
  • [5] Almost periodic one-dimensional systems
    Mugassabi, S.
    Vourdas, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [6] Speeds of Spread and Propagation for KPP Models in Time Almost and Space Periodic Media
    Huang, Jianhua
    Shen, Wenxian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (03): : 790 - 821
  • [7] Front propagation in one-dimensional spatially periodic bistable media
    Loeber, Jakob
    Baer, Markus
    Engel, Harald
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [8] Heterogeneous Diffusion and Nonlinear Advection in a One-Dimensional Fisher-KPP Problem
    Diaz Palencia, Jose Luis
    Rahman, Saeed Ur
    Redondo, Antonio Naranjo
    ENTROPY, 2022, 24 (07)
  • [9] Traveling fronts for Fisher-KPP lattice equations in almost-periodic media
    Liang, Xing
    Wang, Hongze
    Zhou, Qi
    Zhou, Tao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (05): : 1179 - 1237
  • [10] Propagation in Fisher-KPP type equations with fractional diffusion in periodic media
    Cabre, Xavier
    Coulon, Anne-Charline
    Roquejoffre, Jean-Michel
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (19-20) : 885 - 890