Homoclinic Orbits and Chaos in Nonlinear Dynamical Systems: Auxiliary Systems Method

被引:0
|
作者
Grechko, D. A. [1 ,2 ]
Barabash, N., V [1 ,2 ]
Belykh, V. N. [1 ,2 ]
机构
[1] Volga State Univ Water Transport, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603022, Russia
基金
俄罗斯科学基金会;
关键词
homoclinic orbit; Van der Pol-Duffing oscillator; Shilnikov chaos;
D O I
10.1134/S199508022202007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The auxiliary systems method in other words the method of two-dimensional comparison systems plays an essential role in the nonlocal bifurcational dynamical systems theory. In this paper we demonstrate this method in a particular case of 4-dimensional nonlinear dynamical system formed by a coupled Van der Pol-Duffing oscillator and a linear oscillator. For this system, using the auxiliary systems method, a rigorous proof of the existence of a homoclinic orbit of a saddle-focus is carried out for which the Shilnikov condition of chaos is satisfied. The paper is dedicated to the memory of Gennady A. Leonov, who made a significant contribution to the development of methods for the analytical study of dynamical systems.
引用
收藏
页码:3365 / 3371
页数:7
相关论文
共 50 条
  • [41] Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators
    Kenig, Eyal
    Tsarin, Yuriy A.
    Lifshitz, Ron
    [J]. PHYSICAL REVIEW E, 2011, 84 (01):
  • [42] Jacobian-Free Variational Method for Constructing Connecting Orbits in Nonlinear Dynamical Systems
    Ashtari, Omid
    Schneider, Tobias M.
    [J]. arXiv, 2023,
  • [43] Jacobian-free variational method for computing connecting orbits in nonlinear dynamical systems
    Ashtari, Omid
    Schneider, Tobias M.
    [J]. CHAOS, 2023, 33 (07)
  • [44] HOMOCLINIC CHAOS IN CHEMICAL-SYSTEMS
    ARNEODO, A
    ARGOUL, F
    ELEZGARAY, J
    RICHETTI, P
    [J]. PHYSICA D, 1993, 62 (1-4): : 134 - 169
  • [45] Detecting stable–unstable nonlinear invariant manifold and homoclinic orbits in mechanical systems
    Stefano Lenci
    Giuseppe Rega
    [J]. Nonlinear Dynamics, 2011, 63 : 83 - 94
  • [46] A NUMERICAL-METHOD FOR FINDING HOMOCLINIC ORBITS OF HAMILTONIAN-SYSTEMS
    LASSOUED, L
    MATHLOUTHI, S
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (1-2) : 155 - 172
  • [47] On the construction of orbits homoclinic to plane waves in integrable coupled nonlinear Schrodinger systems
    Forest, MG
    Sheu, SP
    Wright, OC
    [J]. PHYSICS LETTERS A, 2000, 266 (01) : 24 - 33
  • [48] Homoclinic orbits to small periodic orbits for a class of reversible systems
    Lombardi, E
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 1035 - 1054
  • [49] Chaos and Dynamical Systems
    Bohn, John L.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2020, 88 (04) : 335 - 336
  • [50] Homoclinic orbits and chaos in a multimode laser
    Tang, DY
    Heckenberg, NR
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (11) : 2930 - 2935