Interpolation at a few points

被引:3
|
作者
Wulbert, D [1 ]
机构
[1] Univ Calif San Diego, Dept Math 0112, La Jolla, CA 92093 USA
关键词
D O I
10.1006/jath.1998.3224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For k=2 and 3, B. Shekhtman proved that n + k-1 is the smallest dimension of a subspace, F subset of or equal to C(R(n)) that can interpolate to k specified real values at k distinct points in R(n). Here we characterize such spaces that interpolate at a few points. The characterization provides an economical proof of Shekhtman's theorems, as well as establishing new properties of these spaces. (C) 1999 Academic Press.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 50 条
  • [31] ON TRIGONOMETRIC INTERPOLATION IN AN EVEN NUMBER OF POINTS
    Austin, Anthony P.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 58 : 271 - 288
  • [32] Alternation points and bivariate Lagrange interpolation
    Harris, Lawrence A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 43 - 52
  • [33] INTERIOR POINTS OF THE CONVEX-HULL OF FEW POINTS IN ED
    BEZDEK, A
    BEZDEK, K
    MAKAI, E
    MONATSHEFTE FUR MATHEMATIK, 1991, 111 (03): : 181 - 186
  • [34] Reducing control points in surface interpolation
    Piegl, LA
    Tiller, W
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2000, 20 (05) : 70 - 74
  • [35] ON POLYNOMIAL INTERPOLATION AT THE POINTS OF A GEOMETRIC PROGRESSION
    SCHOENBERG, IJ
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1981, 90 : 195 - 207
  • [36] Reusing Chebyshev points for polynomial interpolation
    Ghili, Saman
    Iaccarino, Gianluca
    NUMERICAL ALGORITHMS, 2015, 70 (02) : 249 - 267
  • [37] BIVARIATE SPLINE INTERPOLATION AT GRID POINTS
    NURNBERGER, G
    RIESSINGER, T
    NUMERISCHE MATHEMATIK, 1995, 71 (01) : 91 - 119
  • [38] SUPERCONVERGENCE POINTS OF FRACTIONAL SPECTRAL INTERPOLATION
    Zhao, Xuan
    Zhang, Zhimin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A598 - A613
  • [39] TRIGONOMETRIC INTERPOLATION AND QUADRATURE IN PERTURBED POINTS
    Austin, Anthony P.
    Trefethen, Lloyd N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) : 2113 - 2122
  • [40] Reusing Chebyshev points for polynomial interpolation
    Saman Ghili
    Gianluca Iaccarino
    Numerical Algorithms, 2015, 70 : 249 - 267