Splitting algorithms for general pseudomonotone mixed variational inequalities

被引:19
|
作者
Noor, MA [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
关键词
variational inequalities; resolvent equations; iterative methods; convergence; fixed points;
D O I
10.1023/A:1008322118873
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we suggest and analyze a number of resolvent-splitting algorithms for solving general mixed variational inequalities by using the updating technique of the solution. The convergence of these new methods requires either monotonicity or pseudomonotonicity of the operator. Proof of convergence is very simple. Our new methods differ from the existing splitting methods for solving variational inequalities and complementarity problems. The new results are versatile and are easy to implement.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [21] Algorithms for solutions of extended general mixed variational inequalities and fixed points
    Balooee, Javad
    Cho, Yeol Je
    [J]. OPTIMIZATION LETTERS, 2013, 7 (08) : 1929 - 1955
  • [22] New extragradient-like algorithms for strongly pseudomonotone variational inequalities
    Dang Van Hieu
    Duong Viet Thong
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (02) : 385 - 399
  • [23] New extragradient-like algorithms for strongly pseudomonotone variational inequalities
    Dang Van Hieu
    Duong Viet Thong
    [J]. Journal of Global Optimization, 2018, 70 : 385 - 399
  • [24] Modified Golden Ratio Algorithms for Pseudomonotone Equilibrium Problems and Variational Inequalities
    Yin, Lulu
    Liu, Hongwei
    Xi'an
    Yang, Jun
    Xianyang
    [J]. APPLICATIONS OF MATHEMATICS, 2022, 67 (03) : 273 - 296
  • [25] Algorithms for nonlinear mixed variational inequalities
    Muhammad Aslam Noor
    Eisa A. Al-Said
    [J]. Korean Journal of Computational & Applied Mathematics, 1998, 5 (2) : 271 - 286
  • [26] GENERALIZED MIXED VARIATIONAL-LIKE INEQUALITIES WITH COMPOSITELY PSEUDOMONOTONE MULTIFUNCTIONS
    Ceng, L. -C.
    Ansari, Q. H.
    Yao, J. -C.
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (03): : 477 - 491
  • [27] Extragradient methods for pseudomonotone variational inequalities
    Noor, MA
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (03) : 475 - 488
  • [28] PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND FIXED POINTS
    Ceng, L. C.
    Petrusel, A.
    Qin, X.
    Yao, J. C.
    [J]. FIXED POINT THEORY, 2021, 22 (02): : 543 - 558
  • [29] Extragradient Methods for Pseudomonotone Variational Inequalities
    M.A. Noor
    [J]. Journal of Optimization Theory and Applications, 2003, 117 : 475 - 488
  • [30] Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators
    Yao, Yonghong
    Postolache, Mihai
    Yao, Jen-Chih
    [J]. MATHEMATICS, 2019, 7 (12)