Spectral asymptotics for δ-interactions on sharp cones
被引:3
|
作者:
Ourmieres-Bonafos, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Sud, Lab Math Orsay, Univ Paris Saclay, CNRS, F-91405 Orsay, FranceUniv Paris Sud, Lab Math Orsay, Univ Paris Saclay, CNRS, F-91405 Orsay, France
Ourmieres-Bonafos, Thomas
[1
]
Pankrashkin, Konstantin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Sud, Lab Math Orsay, Univ Paris Saclay, CNRS, F-91405 Orsay, France
ENSTA ParisTech, Lab Poems, INRIA, 828 Blvd Marechaux, F-91762 Palaiseau, FranceUniv Paris Sud, Lab Math Orsay, Univ Paris Saclay, CNRS, F-91405 Orsay, France
Pankrashkin, Konstantin
[1
,2
]
Pizzichillo, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
BCAM, Mazarredo 14, Bilbao 48009, Basque Country, SpainUniv Paris Sud, Lab Math Orsay, Univ Paris Saclay, CNRS, F-91405 Orsay, France
Pizzichillo, Fabio
[3
]
机构:
[1] Univ Paris Sud, Lab Math Orsay, Univ Paris Saclay, CNRS, F-91405 Orsay, France
We investigate the spectrum of three-dimensional Schrodinger operators with delta-interactions of constant strength supported on circular cones. As shown in earlier works, such operators have infinitely many eigenvalues below the threshold of the essential spectrum. We focus on spectral properties for sharp cones, that is when the cone aperture goes to zero, and we describe the asymptotic behavior of the eigenvalues and of the eigenvalue counting function. A part of the results are given in terms of numerical constants appearing as solutions of transcendental equations involving modified Bessel functions. (C) 2017 Elsevier Inc. All rights reserved.