Gabor Frames for Model Sets

被引:2
|
作者
Matusiak, Ewa [1 ]
机构
[1] Univ Vienna, Dept Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
Gabor frames; Model sets; Almost periodic functions; Poisson's summation formula; WINDOWED FOURIER-TRANSFORM; SHIFT-INVARIANT SPACES; WAVELET TRANSFORM;
D O I
10.1007/s00041-019-09674-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize three main concepts of Gabor analysis for lattices to the setting of model sets: fundamental identity of Gabor analysis, Janssen's representation of the frame operator and Wexler-Raz biorthogonality relations. Utilizing the connection between model sets and almost periodic functions, as well as Poisson's summations formula for model sets we develop a form of a bracket product that plays a central role in our approach. Furthermore, we show that, if a Gabor system for a model set admits a dual which is of Gabor type, then the density of the model set has to be greater than one.
引用
收藏
页码:2570 / 2607
页数:38
相关论文
共 50 条
  • [31] Gabor Frames without Inequalities
    Groechenig, Karlheinz
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [32] Gabor frames and operator algebras
    Gabardo, JP
    Han, DG
    Larson, DR
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 337 - 345
  • [33] Gabor frames with rational density
    Lyubarskii, Yurii
    Nes, Preben Graberg
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (03) : 488 - 494
  • [34] On perturbations of irregular Gabor frames
    Lakey, JD
    Wang, Y
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) : 111 - 129
  • [35] Gabor frames by sampling and periodization
    Peter L. Søndergaard
    [J]. Advances in Computational Mathematics, 2007, 27 : 355 - 373
  • [36] Necessary conditions for Gabor frames
    Xian-liang Shi
    Fang Chen
    [J]. Science in China Series A: Mathematics, 2007, 50 : 276 - 284
  • [37] Inequalities for irregular Gabor frames
    Zang, Lili
    Sun, Wenchang
    [J]. MONATSHEFTE FUR MATHEMATIK, 2008, 154 (01): : 71 - 81
  • [38] Gabor frames by sampling and periodization
    Sondergaard, Peter L.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (04) : 355 - 373
  • [39] Approximations for Gabor and wavelet frames
    Han, DG
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (08) : 3329 - 3342
  • [40] Irregular Gabor frames and their stability
    Sun, WC
    Zhou, XW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) : 2883 - 2893