A note on principal subspaces of the affine lie algebras in types Bl(1),Cl(1),F4(1) and G2(1)

被引:3
|
作者
Butorac, Marijana [1 ]
机构
[1] Univ Rijeka, Dept Math, Radmile Matejcic 2, Rijeka 51000, Croatia
关键词
Affine Lie algebras; combinatorial bases; principal subspaces; quasi-particles; vertex operator algebras; VERTEX OPERATOR-ALGEBRAS; CONFORMAL FIELD-THEORIES; QUASI-PARTICLE BASES; COMBINATORIAL BASES; MODULES; EXTENSIONS; CHARACTERS;
D O I
10.1080/00927872.2020.1788046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct quasi-particle bases of principal subspaces of standard modules L(Lambda), where Lambda - k(0)Lambda(0) + k(j)Lambda(j), and Lambda(j) denotes the fundamental weight of affine Lie algebras of type B-1((1)), C-1((1)), F-4((1)) or G(2)((1)) of level one. From the given bases we find characters of principal subspaces.
引用
收藏
页码:5343 / 5359
页数:17
相关论文
共 50 条
  • [11] IRREDUCIBLE LIE CARPETS OF TYPES B1, C1 AND F4 OVER FIELDS
    Likhacheva, Alena Olegovna
    Nuzhin, Yakov Nifantevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (01): : 124 - 131
  • [12] Characteristically nilpotent Lie algebras of type g1 x g2
    Bermúdez, JMA
    Campoamor, R
    FORUM MATHEMATICUM, 2003, 15 (02) : 299 - 307
  • [13] PRESENTATIONS OF FEIGIN-STOYANOVSKY'S TYPE SUBSPACES OF STANDARD MODULES FOR AFFINE LIE ALGEBRAS OF TYPE Cl(1)
    Trupcevic, Goran
    GLASNIK MATEMATICKI, 2018, 53 (01) : 115 - 121
  • [14] Principal subspaces for quantum affine algebra Uq(An(1))
    Kozic, Slaven
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (11) : 2119 - 2148
  • [15] Nilpotent Lie algebras of maximal rank and of Kac-Moody type:: F4(1)
    Fernández-Ternero, D
    Núñez-Valdés, J
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1551 - 1570
  • [16] Principal subspaces for the quantum affine vertex algebra in type A1(1)
    Butorac, Marijana
    Kozic, Slaven
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (06)
  • [17] Affine geometric crystal of type G2(1)
    Nakashima, Toshiki
    LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS AND THEIR APPLICATIONS, 2007, 442 : 179 - 192
  • [18] Lepowsky's and Wakimoto's product formulas for the affine Lie algebras Cl(1)
    Butorac, M.
    Kozic, S.
    Meurman, A.
    Primc, M.
    JOURNAL OF ALGEBRA, 2024, 660 : 147 - 189
  • [19] STRUCTURE OF THE LEVEL ONE STANDARD MODULES FOR THE AFFINE LIE-ALGEBRA G2(1)
    MANDIA, M
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1986, 58 (02): : 329 - 330
  • [20] The soliton equations associated with the affine Kac-Moody Lie algebra G2(1)
    Casati, Paolo
    Della Vedova, Alberto
    Ortenzi, Giovanni
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (03) : 377 - 386