A new approach to constructing subdivision connectivity meshes

被引:0
|
作者
Wu, Y [1 ]
He, YJ [1 ]
Cai, HM [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
关键词
remeshing; subdivision connectivity; spherical parameterization;
D O I
10.1109/CSCWD.2005.194245
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new approach to converting irregular genus-0 meshes into those with subdivision connectivity. The original mesh is parameterized onto the unit sphere firstly. Then a spherical base mesh is constructed with only four vertices. After that, a 1-to-4 subdivision operation and an iterative vertex relocation operation are applied alternately over the base mesh to produce a spherical subdivision mesh, which has similar vertex distribution as the spherical parameterized one. Finally, the remesh with subdivision connectivity is obtained by sampling the original surface. The experimental results show that our method can not only make the number of irregular vertices in the remesh as small as possible (only four), but also preserve the details of original model well.
引用
下载
收藏
页码:627 / 632
页数:6
相关论文
共 50 条
  • [1] A new interpolatory subdivision for quadrilateral meshes
    Li, G
    Ma, W
    Bao, H
    COMPUTER GRAPHICS FORUM, 2005, 24 (01) : 3 - 16
  • [2] Displaced subdivision meshes
    Hussain, M
    Okada, Y
    Niijima, K
    PROCEEDINGS OF THE FIFTEENTH IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2004, : 497 - 502
  • [3] Illumination and View Dependent Progressive Transmission of Semi-regular Meshes with Subdivision Connectivity
    Guan, Wei
    Zhang, Juyong
    Cai, Jianfei
    Zheng, Jianmin
    GRAPHITE 2007: 5TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES IN AUSTRALASIA AND SOUTHERN ASIA, PROCEEDINGS, 2007, : 219 - 226
  • [4] √2 Subdivision for quadrilateral meshes
    Guiqing Li
    Weiyin Ma
    Hujun Bao
    The Visual Computer, 2004, 20 : 180 - 198
  • [5] √2 subdivision for quadrilateral meshes
    Li, GQ
    Ma, WY
    Bao, HJ
    VISUAL COMPUTER, 2004, 20 (2-3): : 180 - 198
  • [6] Modeling with general subdivision meshes
    Purgathofer, W
    VISION MODELING, AND VISUALIZATION 2002, PROCEEDINGS, 2002, : 59 - 59
  • [7] A subdivision scheme for hexahedral meshes
    Bajaj, C
    Schaefer, S
    Warren, J
    Xu, GL
    VISUAL COMPUTER, 2002, 18 (5-6): : 343 - 356
  • [8] Combinatorial properties of subdivision meshes
    Ivrissimtzis, I
    Seidel, HP
    MATHEMATICS OF SURFACES, PROCEEDINGS, 2003, 2768 : 73 - 84
  • [9] Incremental subdivision for triangle meshes
    Pakdel, Hamid-Reza
    Samavati, Faramarz F.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2007, 3 (01) : 80 - 92
  • [10] Ternary subdivision for quadrilateral meshes
    Ni, Tianyun
    Nasri, Ahmad H.
    Peter, Joerg
    COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (06) : 361 - 370