Meta-Analysis of Genetic Association Studies

被引:115
|
作者
Lee, Young Ho [1 ]
机构
[1] Korea Univ, Coll Med, Dept Internal Med, Div Rheumatol, Seoul 136705, South Korea
基金
英国惠康基金;
关键词
Gene; Polymorphism; Association study; Meta-analysis; RHEUMATOID-ARTHRITIS; SUSCEPTIBILITY; BIAS; POLYMORPHISMS; CHOICE;
D O I
10.3343/alm.2015.35.3.283
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
The object of this review is to help readers to understand meta-analysis of genetic association study. Genetic association studies are a powerful approach to identify susceptibility genes for common diseases. However, the results of these studies are not consistently reproducible. In order to overcome the limitations of individual studies, larger sample sizes or meta-analysis is required. Meta-analysis is a statistical tool for combining results of different studies on the same topic, thus increasing statistical strength and precision. Meta-analysis of genetic association studies combines the results from independent studies, explores the sources of heterogeneity, and identifies subgroups associated with the factor of interest. Meta-analysis of genetic association studies is an effective tool for garnering a greater understanding of complex diseases and potentially provides new insights into gene-disease associations.
引用
收藏
页码:283 / 287
页数:5
相关论文
共 50 条
  • [21] Identifying systematic heterogeneity patterns in genetic association meta-analysis studies
    Magosi, Lerato E.
    Goel, Anuj
    Hopewell, Jemma C.
    Farrall, Martin
    [J]. PLOS GENETICS, 2017, 13 (05):
  • [22] Meta-analysis of genetic association studies: Limitations, and directions for future research
    Munafo, M
    Clark, T
    Flint, J
    [J]. AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2005, 138B (01) : 112 - 112
  • [23] Bayesian meta-analysis of genetic association studies with different sets of markers
    Verzilli, Claudio
    Shah, Tina
    Casas, Juan P.
    Chapman, Juliet
    Sandhu, Manjinder
    Debenham, Sally L.
    Boekholdt, Matthijs S.
    Khaw, Kay Tee
    Wareham, Nicholas J.
    Judson, Richard
    Benjamin, Emelia J.
    Kathiresan, Sekar
    Larson, Martin G.
    Rong, Jian
    Sofat, Reecha
    Humphries, Steve E.
    Smeeth, Liam
    Cavalleri, Gianpiero
    Whittaker, John C.
    Hingorani, Aroon D.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (04) : 859 - 872
  • [24] Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls
    Kavvoura, Fotini K.
    Ioannidis, John P. A.
    [J]. HUMAN GENETICS, 2008, 123 (01) : 1 - 14
  • [25] A simulations approach for meta-analysis of genetic association studies based on additive genetic model
    John, Majnu
    Lencz, Todd
    Malhotra, Anil K.
    Correll, Christoph U.
    Zhang, Jian-Ping
    [J]. META GENE, 2018, 16 : 143 - 164
  • [26] Systematic review and meta-analysis of genetic association studies of pelvic organ prolapse
    Chua, John W. F.
    Allen-Brady, Kristina
    Cuffolo, Romana
    Koch, Marianne
    Sorrentino, Felice
    Cartwright, Rufus
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 106 - 107
  • [27] Meta-analysis of genetic association studies: magic tool or dangerous black box?
    Minelli, Cosetta
    Thompson, John
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2010, 25 (11) : 761 - 763
  • [28] Promise and pitfalls in the meta-analysis of genetic association studies: a response to Sen and Schinka
    M R Munafò
    T Clark
    J Flint
    [J]. Molecular Psychiatry, 2005, 10 : 895 - 897
  • [29] Systematic review and meta-analysis of genetic association studies of pelvic organ prolapse
    Allen-Brady, Kristina
    Chua, John W. F.
    Cuffolo, Romana
    Koch, Marianne
    Sorrentino, Felice
    Cartwright, Rufus
    [J]. INTERNATIONAL UROGYNECOLOGY JOURNAL, 2022, 33 (01) : 67 - 82
  • [30] An integrated approach to the meta-analysis of genetic association studies using Mendelian randomization
    Minelli, C
    Thompson, JR
    Tobin, MD
    Abrams, KR
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 160 (05) : 445 - 452