共 4 条
Purification and characterization of α-L-arabinopyranosidase and α-L-arabinofuranosidase from Bifidobactetium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc
被引:76
|作者:
Shin, HY
Park, SY
Sung, JH
Kim, DH
机构:
[1] Kyung Hee Univ, Coll Pharm, Seoul 130701, South Korea
[2] Il Hwa Co Ltd, Cent Res Inst, Guri, Kyonggi Do, South Korea
关键词:
D O I:
10.1128/AEM.69.12.7116-7123.2003
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Two arabinosidases, alpha-L-arabinopyranosidase (no EC number) and alpha-L-arabinofuranosidase (EC 3.2.1.55), were purified from ginsenoside-metabolizing Bifidobacterium breve K-110, which was isolated from human intestinal microflora. alpha-L-Arabinopyranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, QAE-cellulose, and Sephacryl S-300 HR column chromatography, with a final specific activity of 8.81 mumol/min/mg. alpha-L-Arabinofuranosidase was purified to apparent homogeneity, using a combination of ammonium sulfate fractionation, DEAE-cellulose, butyl Toyopearl, hydroxyapatite Ultrogel, Q-Sepharose, and Sephacryl S-300 column chromatography, with a final specific activity of 6.46 mumol/min/mg. The molecular mass of alpha-L-arabinopyranosidase was found to be 310 kDa by gel filtration, consisting of four identical subunits (77 kDa each, measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]), and that of alpha-L-arabinopyranosidase was found to be 60 kDa by gel filtration and SDS-PAGE. alpha-L-Arabinopyranosidase and alpha-L-arabinofuranosidase showed optimal activity at pH 5.5 to 6.0 and 40degreesC and pH 4.5 and 45degreesC, respectively. Both purified enzymes were potently inhibited by Cu2+ and p-chlormercuryphenylsulfonic acid. alpha-L-Arabinopyranosidase acted to the greatest extent on p-nitrophenyl-alpha-L-arabinopyranoside, followed by ginsenoside Rb2. alpha-L-Arabinofuranosidase acted to the greatest extent on p-nitrophenyl-alpha-L-arabinofuranoside, followed by ginsenoside Rc. Neither enzyme acted on p-nitrophenyl-beta-galactopyranoside or p-nitrophenyl-beta-D-fucopyranoside. These findings suggest that the biochemical properties and substrate specificities of these purified enzymes are different from those of previously purified alpha-L-arabinosidases. This is the first reported purification Of alpha-L-arabinopyranosidase from an anaerobic Bifidobacterium sp.
引用
收藏
页码:7116 / 7123
页数:8
相关论文