Electrical networks on n-simplex fractals

被引:0
|
作者
Burioni, R.
Cassi, D.
Neri, F. M.
机构
[1] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[2] Ist Nazl Fis Nucl, Grp Collegato Parma, I-43100 Parma, Italy
关键词
D O I
10.1088/1751-8113/40/41/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The decimation map D for a network of admittances on an n- simplex lattice fractal is studied. The asymptotic behaviour of D for large- size fractals is examined. It is found that in the vicinity of the isotropic point the eigenspaces of the linearized map are always three for n >= 4; they are given a characterization in terms of graph theory. A new anisotropy exponent, related to the third eigenspace, is found, with a value crossing over from ln[(n + 2)/3]/ln 2 to ln[(n + 2)(3)/n(n + 1)(2)]/ln 2.
引用
收藏
页码:12397 / 12408
页数:12
相关论文
共 50 条