Opposing function of mitochondrial prohibitin in aging

被引:22
|
作者
Artal-Sanz, Marta [2 ]
Tavernarakis, Nektarios [1 ]
机构
[1] Fdn Res & Technol, Inst Mol Biol & Biotechnol, Iraklion 71110, Crete, Greece
[2] Univ Freiburg, Lab Bioinformat & Mol Genet, D-79104 Freiburg, Germany
来源
AGING-US | 2010年 / 2卷 / 12期
基金
欧洲研究理事会;
关键词
insulin; lipids; metabolism; mitochondria; stress; SYSTEMATIC RNAI SCREEN; REPLICATIVE LIFE-SPAN; CAENORHABDITIS-ELEGANS; C-ELEGANS; SACCHAROMYCES-CEREVISIAE; CRISTAE MORPHOGENESIS; REGULATES LONGEVITY; CELL-PROLIFERATION; DNA NUCLEOIDS; MEMBRANE;
D O I
10.18632/aging.100246
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
While specific signalling cascades involved in aging, such as the insulin/IGF-1 pathway, are well-described, the actual metabolic changes they elicit to prolong lifespan remain obscure. Nevertheless, the tuning of cellular metabolism towards maximal survival is the molecular basis of longevity. The eukaryotic mitochondrial prohibitin complex is a macromolecular structure at the inner mitochondrial membrane, implicated in several important cellular processes such as mitochondrial biogenesis and function, molecular signalling, replicative senescence, and cell death. Recent studies in C. elegans have revealed that prohibitin differentially influences aging by moderating fat metabolism and energy production, in response to both intrinsic signalling events and extrinsic cues. These findings indicate that prohibitin is a context-dependent modulator of longevity. The tight evolutionary conservation and ubiquitous expression of prohibitin proteins suggest a similar role for the mitochondrial prohibitin complex during aging in other organisms.
引用
收藏
页码:1004 / 1011
页数:8
相关论文
共 50 条
  • [41] Estrogen regulation of mitochondrial function and impact of the aging process
    Nilsen, J
    Brinton, RD
    HORMONE REPLACEMENT THERAPY AND THE BRAIN: THE CURRENT STATUS OF RESEARCH AND PRACTICE, 2003, : 12 - 24
  • [42] SRF ISOFORMS DIFFERENTIALLY IMPACT MITOCHONDRIAL FUNCTION AND AGING
    Sharma, Shakshi
    Zhang, Xiaomin
    Azhar, Gohar
    Wei, Jeanne Y.
    INNOVATION IN AGING, 2024, 8 : 705 - 705
  • [43] The aging oocyte-can mitochondrial function be improved?
    Bentov, Yaakov
    Casper, Robert F.
    FERTILITY AND STERILITY, 2013, 99 (01) : 18 - 22
  • [44] Regulation of aging by balancing mitochondrial function and antioxidant levels
    Sawako Yoshina
    Luna Izuhara
    Naoyuki Kamatani
    Shohei Mitani
    The Journal of Physiological Sciences, 2022, 72
  • [45] Melatonin as a stabilizer of mitochondrial function: role in diseases and aging
    Carrasco, Cristina
    Beatriz Rodriguez, Ana
    Antonio Pariente, Jose
    TURKISH JOURNAL OF BIOLOGY, 2015, 39 (06) : 822 - 831
  • [46] Oxidative stress and mitochondrial function: Implications in brain aging
    Chatterjee, U
    Sen, T
    Chakrabarti, S
    EXPERIMENTAL GERONTOLOGY, 2004, 39 (11-12) : 1766 - 1767
  • [47] Insulin Resistance in Aging: No Association with Mitochondrial Capacity or Function
    Johannsen, Darcy L.
    Ravussin, Eric
    OBESITY, 2009, 17 : S105 - S105
  • [48] Comparative Studies of Oxidative Stress and Mitochondrial Function in Aging
    Shi, Yun
    Buffenstein, Rochelle
    Pulliam, Daniel A.
    Van Remmen, Holly
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2010, 50 (05) : 869 - 879
  • [49] Regulation of aging by balancing mitochondrial function and antioxidant levels
    Yoshina, Sawako
    Izuhara, Luna
    Kamatani, Naoyuki
    Mitani, Shohei
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2022, 72 (01):
  • [50] Muscle blood flow and mitochondrial function: Influence of aging
    Terjung, RL
    Zarzeczny, R
    Yang, HT
    INTERNATIONAL JOURNAL OF SPORT NUTRITION AND EXERCISE METABOLISM, 2002, 12 (03): : 368 - 378