PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS

被引:0
|
作者
Li, Mengyuan [1 ,2 ]
Liu, Qihuai [3 ,4 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[2] Chengdu Modern Vocat & Tech Sch, Chengdu 610000, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[4] Guangxi Normal Univ, Ctr Appl Math Guangxi, Guilin 541004, Peoples R China
关键词
Periodic orbit; averaging theory; residue theorem; spatial anisotropic Kepler problem; 2-BODY PROBLEM; GRAVITATION; PRINCIPLE; STABILITY; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the periodic orbits of the spatial anisotropic Kepler problem with anisotropic perturbations on each negative energy surface, where the perturbations are homogeneous functions of arbitrary integer degree p. By choosing the different ranges of a parameter beta, we show that there exist at least 6 periodic solutions for p > 1, while there exist at least 2 periodic solutions for p <= 1 on each negative energy surface. The proofs of main results are based on symplectic Delaunay coordinates, residue theorem, and averaging theory.
引用
收藏
页数:42
相关论文
共 50 条
  • [41] On the Periodic Structure of the Anisotropic Manev Problem
    Juan Luis García Guirao
    José Luis Roca
    Juan Antonio Vera López
    Qualitative Theory of Dynamical Systems, 2019, 18 : 987 - 999
  • [42] COORDINATE PERTURBATIONS FROM KEPLER ORBITS
    GEYLING, FT
    AIAA JOURNAL, 1963, 1 (08) : 1899 - 1901
  • [43] Anisotropic Kepler and anisotropic two fixed centres problems
    Andrzej J. Maciejewski
    Maria Przybylska
    Wojciech Szumiński
    Celestial Mechanics and Dynamical Astronomy, 2017, 127 : 163 - 184
  • [44] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Barutello, Vivina
    Terracini, Susanna
    Verzini, Gianmaria
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (02) : 583 - 609
  • [45] Anisotropic Kepler and anisotropic two fixed centres problems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    Szuminski, Wojciech
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2017, 127 (02): : 163 - 184
  • [46] MULTIFRACTAL MEASURES AND STABILITY ISLANDS IN THE ANISOTROPIC KEPLER-PROBLEM
    GUTZWILLER, MC
    PHYSICA D, 1989, 38 (1-3): : 160 - 171
  • [47] Realization of Anisotropic Diamagnetic Kepler Problem in a Solid State Environment
    Chen, Zhanghai
    Zhou, Weihang
    Zhang, Bo
    Yu, C. H.
    Zhu, Jingbing
    Lu, Wei
    Shen, S. C.
    PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [48] Entire Minimal Parabolic Trajectories: The Planar Anisotropic Kepler Problem
    Vivina Barutello
    Susanna Terracini
    Gianmaria Verzini
    Archive for Rational Mechanics and Analysis, 2013, 207 : 583 - 609
  • [49] EXPONENTIAL INSTABILITY OF COLLISION ORBIT IN THE ANISOTROPIC KEPLER-PROBLEM
    YOSHIDA, H
    CELESTIAL MECHANICS, 1987, 40 (01): : 51 - 66
  • [50] Symmetric periodic solutions of the anisotropic Manev problem
    Santoprete, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (06) : 3207 - 3219