Estimation of Transmission Lines Parameters Using Particle Swarm Optimization

被引:0
|
作者
Cabezas Soldevilla, Fermin Rafael [1 ]
Cabezas Huerta, Franklin Alfredo [1 ]
机构
[1] Natl Univ Engn, Fac Mech Engn, PhD Program Energet, Lima, Peru
关键词
state estimation; parameter estimation; cross-sectional losses; particle swarm optimization;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of the values with good accuracy of physical parameters of transmission systems is very important because using very different values from the real ones seriously distorts the evaluation of the planning, design, operation, maintenance and commercialization of the transmission systems. The present work describes the identification of physical parameters of a real transmission system using a mathematical model with variable values of the physical parameters. The identification is done by comparing the real operation of the system with the simulated operation of the model, varying iteratively the physical parameters values of the mathematical model. To this purpose two different techniques were applied, a classical and a modern meta-heuristic technique to 47 high voltage transmission lines of the Peruvian electrical system. The real operation is obtained from the database of the measurements of the operating variables of the transmission system. The correct values of the physical parameters will be those that correspond to the simulated operation identified. This paper is organized as follows: Section II describes the philosophy of the parameter estimation problem, here is included the symbology, the model of the transmission system, the formulation of the problem and its solution. In section III, the results of the identified parameters are presented and discussed. Finally, in section IV the conclusions are presented.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    A. Moghaddam
    J. Behmanesh
    A. Farsijani
    [J]. Water Resources Management, 2016, 30 : 2143 - 2160
  • [42] Parameters Estimation in Topological Kernel Bayesian ART using Multi-objective Particle Swarm Optimization
    Lee, Gin Chong
    Loo, Chu Kiong
    Masuyama, Naoki
    [J]. 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1595 - 1601
  • [43] Study of Parameters Estimation of The Three-Compartment Pharmacokinetic Model using Particle Swarm Optimization Algorithm
    Kartono, A.
    Anggraini, D.
    Wahyudi, S. T.
    Setiawan, A. A.
    Irmansyah
    [J]. SEMINAR NASIONAL FISIKA (SNF) UNESA 2020, 2021, 1805
  • [44] Estimation of Parameters of Parathyroid Glands Using Particle Swarm Optimization and Multivariate Generalized Gaussian Function Mixture
    Listewnik, Maria H.
    Piwowarska-Bilska, Hanna
    Safranow, Krzysztof
    Iwanowski, Jacek
    Laszczynska, Maria
    Chosia, Maria
    Ostrowski, Marek
    Birkenfeld, Bolena
    Oszutowska-Mazurek, Dorota
    Mazurek, Przemyslaw
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (21):
  • [45] Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization
    Adam, Asrul
    Shapiai, Mohd Ibrahim
    Tumari, Mohd Zaidi Mohd
    Mohamad, Mohd Saberi
    Mubin, Marizan
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [46] Estimation of Parameters of Triple Diode Photovoltaic Models Using Hybrid Particle Swarm and Grey Wolf Optimization
    Ellithy, Hazem Hassan
    Taha, Adel M.
    Hasanien, Hany M.
    Attia, Mahmoud A.
    El-Shahat, Adel
    Aleem, Shady H. E. Abdel
    [J]. SUSTAINABILITY, 2022, 14 (15)
  • [47] Parameters Estimation for the New Four-Parameter Nonlinear Muskingum Model Using the Particle Swarm Optimization
    Moghaddam, A.
    Behmanesh, J.
    Farsijani, A.
    [J]. WATER RESOURCES MANAGEMENT, 2016, 30 (07) : 2143 - 2160
  • [48] Particle swarm optimization pattern recognition neural network for transmission lines faults classification
    Zhang, Liang
    Zhao, Zhengang
    Zhang, Dacheng
    Luo, Chuan
    Li, Chuan
    [J]. INTELLIGENT DATA ANALYSIS, 2022, 26 (01) : 189 - 203
  • [49] Particle-swarm-optimizer-based optimization of matching loads for lossy transmission lines
    Azaro, R.
    De Natale, F.
    Donelli, M.
    Massa, A.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (08) : 1485 - 1487
  • [50] Balancing stochastic U-lines using particle swarm optimization
    Emel Kızılkaya Aydoğan
    Yılmaz Delice
    Uğur Özcan
    Cevriye Gencer
    Özkan Bali
    [J]. Journal of Intelligent Manufacturing, 2019, 30 : 97 - 111