A mechanistic model for thiol redox dynamics in the organogenesis stage rat conceptus

被引:0
|
作者
Veltman, K. [1 ]
Harris, C. [1 ]
Ahmad, Y. [1 ]
Jolliet, O. [1 ]
机构
[1] Univ Michigan, Dept Environm Hlth Sci, 1420 Washington Hts, Ann Arbor, MI 48109 USA
关键词
Redox dynamics; Model; Glutathione; Cysteine; Embryo; Organogenesis; HISTIOTROPHIC NUTRITION PATHWAYS; GAMMA-GLUTAMYL-TRANSPEPTIDASE; AMINO-ACID-COMPOSITION; GLUTATHIONE SYNTHETASE; CYSTEINE METABOLISM; ACTIVATOR PROTEIN-1; OXIDATIVE STRESS; IN-VIVO; EMBRYO; BIOSYNTHESIS;
D O I
10.1016/j.reprotox.2018.09.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise control of the glutathione/glutathione disulfide (GSH/GSSG) redox balance is vital for the developing embryo, but regulatory mechanisms are poorly understood. We developed a novel, mechanistic mass-balance model for GSH metabolism in the organogenesis stage (gestational day 10.0-11.13) rat conceptus predicting the dynamics of 8 unique metabolites in 3 conceptal compartments: the visceral yolk sac (VYS), the extra-embryonic fluid (EEF) and the embryo proper (EMB). Our results show that thiol concentrations in all compartments are well predicted by the model. Protein synthesis is predicted to be a major efflux pathway for all amino acid precursors of GSH synthesis and an essential model element. Our model provides quantitative insights in the transport fluxes and enzymatic fluxes needed to maintain thiol redox balances under normal physiological conditions. This is crucial to further elucidate the mechanisms through which chemical exposure can perturb redox homeostasis, causing oxidative stress, and potentially birth defects.
引用
收藏
页码:38 / 49
页数:12
相关论文
共 50 条
  • [21] Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury
    Shah, Viral
    Jacob, Daniel J.
    Thackray, Colin P.
    Wang, Xuan
    Sunderland, Elsie M.
    Dibble, Theodore S.
    Saiz-Lopez, Alfonso
    Cernusak, Ivan
    Kello, Vladimir
    Castro, Pedro J.
    Wu, Rongrong
    Wang, Chuji
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (21) : 14445 - 14456
  • [22] Real time microfiberoptic redox fluorometry: Modulation of the pyridine nucleotide status of the organogenesis-stage rat visceral yolk sac with cyanide and alloxan
    Thorsrud, BA
    Harris, C
    [J]. TOXICOLOGY AND APPLIED PHARMACOLOGY, 1995, 135 (02) : 237 - 245
  • [23] A Mechanistic Model for Long COVID Dynamics
    Derrick, Jacob
    Patterson, Ben
    Bai, Jie
    Wang, Jin
    [J]. MATHEMATICS, 2023, 11 (21)
  • [24] An integrative mechanistic model of thymocyte dynamics
    Kulesh, Victoria
    Peskov, Kirill
    Helmlinger, Gabriel
    Bocharov, Gennady
    [J]. FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [25] Expression and activity of the DNA repair enzyme uracil DNA glycosylase during organogenesis in the rat conceptus and following methotrexate exposure in vitro
    Vinson, RK
    Hales, BF
    [J]. BIOCHEMICAL PHARMACOLOGY, 2002, 64 (04) : 711 - 721
  • [26] Nutritional role of the visceral yolk sac in organogenesis-stage rat embryos
    Lloyd, JB
    Beckman, DA
    Brent, RL
    [J]. REPRODUCTIVE TOXICOLOGY, 1998, 12 (02) : 193 - 195
  • [27] Redox control of cytoskeletal dynamics: toggling the thiol switch in CRMP2
    Gellert, M.
    Berndt, C.
    Deponte, M.
    Lillig, C. H.
    [J]. FEBS JOURNAL, 2015, 282 : 115 - 115
  • [28] Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets
    Koenig, Janine
    Muthuramalingam, Meenakumari
    Dietz, Karl-Josef
    [J]. CURRENT OPINION IN PLANT BIOLOGY, 2012, 15 (03) : 261 - 268
  • [29] Intracellular thiol redox status affects rat cytomegalovirus infection of vascular cells
    Vossen, RCRM
    Persoons, MCJ
    SlobbevanDrunen, MEP
    Bruggeman, CA
    vanDamMieras, MCE
    [J]. VIRUS RESEARCH, 1997, 48 (02) : 173 - 183
  • [30] Characterization of plasma thiol redox potential in a common marmoset model of aging
    Roede, James R.
    Uppal, Karan
    Liang, Yongliang
    Promislow, Daniel E. L.
    Wachtman, Lynn M.
    Jones, Dean P.
    [J]. REDOX BIOLOGY, 2013, 1 (01): : 387 - 393