Multi-camera surveillance with visual tagging and generic camera placement

被引:0
|
作者
Zhao, Jian [1 ]
Cheung, Sen-ching S. [1 ]
机构
[1] Univ Kentucky, Ctr Visualizat & Virtual Environm, Lexington, KY 40507 USA
关键词
multi-camera tracking; camera placement; epipolar geometry; visual tags; privacy protection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A common goal in many vision applications is to identify and track human objects with distinctive visual features or "tags". Examples range from identifying distinct soccer player by his jersey number to locating the face of an individual that produces a match in a face recognition system. In this paper, we made two contributions to this "visual tagging" problem. First, we propose a general framework for camera placement. This framework can measure the performance of any particular camera placement using simulation method. The optimal placement strategy can be obtained by iterative grid-based linear programming. Second, we focus on tracking specific colored tags used in a privacy-protecting visual surveillance network. By building a color classifier for tag detection and using epipolar geometry between multiple cameras for occlusion handling, our proposed system can identify, track and visually obfuscate individuals whose privacy in the surveillance video needs to be protected.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [11] INTELLIGENT MULTI-CAMERA VIDEO SURVEILLANCE
    Hameete, P.
    Leysen, S.
    van der Laan, T.
    Lefter, I.
    Rothkrantz, L.
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2012, 4 (04): : 51 - 62
  • [12] A scalable image-based multi-camera visual surveillance system
    Lim, SN
    Davis, LS
    Elgammal, A
    IEEE CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2003, : 205 - 212
  • [13] Ella: Middleware for Multi-camera Surveillance in Heterogeneous Visual Sensor Networks
    Dieber, Bernhard
    Simonjan, Jennifer
    Esterle, Lukas
    Rinner, Bernhard
    Nebehay, Georg
    Pflugfelder, Roman
    Fernandez, Gustavo Javier
    2013 SEVENTH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), 2013,
  • [14] Calibration of a Dynamic Camera Cluster for Multi-Camera Visual SLAM
    Das, Arun
    Waslander, Steven L.
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 4637 - 4642
  • [15] Adaptive online camera coordination for multi-camera multi-target surveillance
    Yao, Yi
    Chen, Chung-Hao
    Koschan, Andreas
    Abidi, Mongi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (04) : 463 - 474
  • [16] Hierarchical database for a multi-camera surveillance system
    Black, J
    Makris, D
    Ellis, T
    PATTERN ANALYSIS AND APPLICATIONS, 2005, 7 (04) : 430 - 446
  • [17] Hierarchical database for a multi-camera surveillance system
    James Black
    Dimitrios Makris
    Tim Ellis
    Pattern Analysis and Applications, 2004, 7 : 430 - 446
  • [18] Scheduling for Multi-Camera Surveillance in LTE Networks
    Wang, Chih-Hang
    Yang, De-Nian
    Chen, Wen-Tsuen
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [19] Face Recognition in Multi-Camera Surveillance Videos
    An, Le
    Bhanu, Bir
    Yang, Songfan
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2885 - 2888
  • [20] Intelligent multi-camera video surveillance: A review
    Wang, Xiaogang
    PATTERN RECOGNITION LETTERS, 2013, 34 (01) : 3 - 19