Experimental study on interface failure behavior of 3D printed continuous fiber reinforced composites

被引:24
|
作者
Kong, Xiangren [1 ]
Luo, Junjie [1 ]
Luo, Quantian [1 ]
Li, Qing [2 ]
Sun, Guangyong [1 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Manufacture Vehicle Bod, Changsha 410082, Peoples R China
[2] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
3D printing; Fused filament fabrication; Carbon fiber reinforced plastic (CFRP); composite; Fracture toughness; Interlayer interface characteristics; CONTINUOUS CARBON-FIBER; PURE MODE-I; FRACTURE CHARACTERIZATION; THERMOPLASTIC COMPOSITES; POLYMER COMPOSITES; TENSILE PROPERTIES; MATRIX COMPOSITES; PERFORMANCE; ADHESIVE; GLASS;
D O I
10.1016/j.addma.2022.103077
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (or 3D printing) for continuous fiber composite exhibits great potential for fabrication of next-generation lightweight sophisticated structural components. Nevertheless, understanding of interface characteristics of printed parts has remained an open research question for broader applications of this new technology in engineering practice. This study aimed to evaluate the interfacial quality of 3D-printed carbon fiber reinforced plastic (CFRP) composites from two aspects: interlaminar fracture toughness in a pure mode and interfacial failure mechanism in a mixed mode. Prior to the experimental tests, the microstructural quality of the 3D printed specimens was characterized, which showed that the void content and shape of different materials are different. There is a clear boundary line where the short fiber matrix layer and the continuous fiber reinforced layer are in contact, while the interface formed between the same material layers has no evident connection traces. The standard specimens were printed for testing pure mode I and mode II interlaminar fracture toughness, through which the GCYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN IC and GIIC of interface between continuous carbon fiber layers was characterized. It was found that the fiber bridging phenomenon presented in the double cantilever beam (DCB) experiments, resulting in a higher initial mode I fracture toughness. The end notched flexure (ENF) tests found that the fracture toughness of initial mode II in between the 0 degrees continuous carbon fiber layers was relatively low. The scanning electron microscope (SEM) analysis revealed that the separated surface had only a small area of the matrix being sheared. The single lap specimen printed directly was proposed as a simplified model for simulating complex structural parts subjected to mixed stress of peel and shear. The mechanical responses and failure characteristics of the interfaces composed of different materials and different fiber angles under mixed stress were studied. It is found that each specimen presented some mixed failure modes, and the interface characteristics of different materials and different fiber orientations were completely different. The results gained in-depth understanding on the interfacial properties of 3D printing fiber reinforced structures, thereby providing key data and knowledge for practical applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] 3D Printed Composites with Continuous Carbon Fiber Reinforcements
    Sarvestani, Ali N.
    van de Werken, Nekoda
    Khanbolouki, Pouria
    Tehrani, Mehran
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 2, 2018,
  • [32] Mechanism based failure of 3D-printed continuous carbon fiber reinforced thermoplastic composites
    Dutra, Thiago Assis
    Ferreira, Rafael Thiago Luiz
    Resende, Hugo Borelli
    Blinzler, Brina Jane
    Asp, Leif E.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 213
  • [33] Experimental analysis of 3D printed continuous carbon/glass hybrid fiber reinforced PLA composites: Revealing synergistic mechanical properties and failure mechanisms
    Chen, Yu
    Wei, Xiao
    Mao, Jian
    Zhao, Man
    Liu, Gang
    POLYMER COMPOSITES, 2024, 45 (12) : 10888 - 10897
  • [34] Analysis of thermal behavior in 3D printing of continuous fiber reinforced polymer composites
    Li, Shixian
    Correia, J. P. M.
    Wang, Kui
    Ahzi, Said
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 2573 - 2583
  • [35] Investigation of recovery behavior on 3D-printed continuous plant fiber-reinforced composites
    Long, Yu
    Zhang, Zhongsen
    Bi, Zhixiong
    Fu, Kunkun
    Li, Yan
    ADDITIVE MANUFACTURING, 2024, 88
  • [36] Bending behavior of 3D printed continuous fiber reinforced composite sandwich cylindrical shells
    Liu, Baosheng
    Jiang, Hong
    Lou, Ruishen
    Liu, Xin
    Wang, Yulin
    Li, Huimin
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024, 43 (15-16) : 926 - 938
  • [37] Micromechanical analysis of the tensile deformation behavior for 3D printed unidirectional continuous fiber reinforced thermos-plastic composites
    Jiuru Lu
    Luyao Xu
    Jun Hu
    Journal of Mechanical Science and Technology, 2020, 34 : 5085 - 5092
  • [38] Micromechanical analysis of the tensile deformation behavior for 3D printed unidirectional continuous fiber reinforced thermos-plastic composites
    Lu, Jiuru
    Xu, Luyao
    Hu, Jun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (12) : 5085 - 5092
  • [39] Process evaluation, tensile properties, mathematical models, and fracture behavior of 3D printed continuous fiber reinforced thermoplastic composites
    Chen, Wei
    Zhang, Qiuju
    Cao, Han
    Yuan, Ye
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2021, 40 (21-22) : 845 - 863
  • [40] Maximizing the Performance of 3D Printed Fiber-Reinforced Composites
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (05):