Modeling pilus structures from sparse data

被引:31
|
作者
Campos, Manuel [2 ]
Francetic, Olivera [2 ]
Nilges, Michael [1 ]
机构
[1] Inst Pasteur, Unite Bioinformat Struct, CNRS, Dept Biol Struct & Chim,URA 2185, F-75015 Paris, France
[2] Inst Pasteur, Unite Genet Mol, CNRS, Dept Microbiol,URA 2172, F-75015 Paris, France
关键词
Molecular modeling; Pilus assembly; Protein secretion; Cysteine cross-linking; NMR STRUCTURE DETERMINATION; AUTOMATED NOE ASSIGNMENT; TOXIN-COREGULATED PILUS; AERUGINOSA PAK PILIN; PSEUDOMONAS-AERUGINOSA; MACROMOLECULAR ASSEMBLIES; RECEPTOR-BINDING; X-RAY; STRUCTURE REFINEMENT; ELECTRON-MICROSCOPY;
D O I
10.1016/j.jsb.2010.11.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial Type II secretion systems (T2SS) and type IV pili (T4P) biogenesis machineries share the ability to assemble thin filaments from pilin protein subunits in the plasma membrane. Here we describe in detail the calculation strategy that served to determine a detailed atomic model of the T2SS pilus from Klebsiella oxytoca (Campos et al., PNAS 2010). The strategy is based on molecular modeling with generalized distance restraints and experimental validation (salt bridge charge inversion; double cysteine substitution and crosslinking). It does not require directly fitting structures into an envelope obtained from electron microscopy, but relies on lower resolution information, in particular the symmetry parameters of the helix forming the pilus. We validate the strategy with T4P where either a higher resolution structure is available (for the gonococcal (GC) pilus from Neisseria gonorrhoeae), or where we can compare our results to additional experimental data (for Vibrio cholerae TCP). The models are of sufficient precision to compare the architecture of the different pili in detail. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:436 / 444
页数:9
相关论文
共 50 条
  • [31] Recovery of Blood Flow From Undersampled Photoacoustic Microscopy Data Using Sparse Modeling
    Sathyanarayana, Sushanth G.
    Wang, Zhuoying
    Sun, Naidi
    Ning, Bo
    Hu, Song
    Hossack, John A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (01) : 103 - 120
  • [32] Surrogate Modeling of Dynamics From Sparse Data Using Maximum Entropy Basis Functions
    Deshpande, Vedang M.
    Bhattacharya, Raktim
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 4046 - 4051
  • [33] Object Modeling and Recognition from Sparse, Noisy Data via Voxel Depth Carving
    Klingensmith, Matthew
    Herrmann, Martin
    Srinivasa, Siddhartha S.
    EXPERIMENTAL ROBOTICS, 2016, 109 : 697 - 713
  • [34] Physics constrained learning for data-driven inverse modeling from sparse observations
    Xu, Kailai
    Darve, Eric
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 453
  • [35] A Method Evaluating Nuclear Density from Neutron Diffraction Data by Using Sparse Modeling
    Tanaka, Hiroshi
    Oie, Michihiro
    Oko, Kazuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (05)
  • [36] Data Selection for Language Modeling Using Sparse Representations
    Sethy, Abhinav
    Sainath, Tara N.
    Ramabhadran, Bhuvana
    Kanevsky, Dimitri
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2258 - +
  • [37] Clustered Sparse Structural Equation Modeling for Heterogeneous Data
    Takasawa, Ippei
    Tanioka, Kensuke
    Yadohisa, Hiroshi
    JOURNAL OF CLASSIFICATION, 2023, 40 (03) : 588 - 613
  • [38] The potential of sparse photometric data in asteroid shape modeling
    Hanus, J.
    Durech, J.
    PLANETARY AND SPACE SCIENCE, 2012, 73 (01) : 75 - 79
  • [39] Data-Driven Human Modeling by Sparse Representation
    Wu, Yiu-Bun
    Liu, Bin
    Liu, Xiuping
    Wang, Charlie C. L.
    COMPUTER-AIDED DESIGN, 2020, 128
  • [40] Clustered Sparse Structural Equation Modeling for Heterogeneous Data
    Ippei Takasawa
    Kensuke Tanioka
    Hiroshi Yadohisa
    Journal of Classification, 2023, 40 : 588 - 613