Modeling pilus structures from sparse data

被引:31
|
作者
Campos, Manuel [2 ]
Francetic, Olivera [2 ]
Nilges, Michael [1 ]
机构
[1] Inst Pasteur, Unite Bioinformat Struct, CNRS, Dept Biol Struct & Chim,URA 2185, F-75015 Paris, France
[2] Inst Pasteur, Unite Genet Mol, CNRS, Dept Microbiol,URA 2172, F-75015 Paris, France
关键词
Molecular modeling; Pilus assembly; Protein secretion; Cysteine cross-linking; NMR STRUCTURE DETERMINATION; AUTOMATED NOE ASSIGNMENT; TOXIN-COREGULATED PILUS; AERUGINOSA PAK PILIN; PSEUDOMONAS-AERUGINOSA; MACROMOLECULAR ASSEMBLIES; RECEPTOR-BINDING; X-RAY; STRUCTURE REFINEMENT; ELECTRON-MICROSCOPY;
D O I
10.1016/j.jsb.2010.11.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial Type II secretion systems (T2SS) and type IV pili (T4P) biogenesis machineries share the ability to assemble thin filaments from pilin protein subunits in the plasma membrane. Here we describe in detail the calculation strategy that served to determine a detailed atomic model of the T2SS pilus from Klebsiella oxytoca (Campos et al., PNAS 2010). The strategy is based on molecular modeling with generalized distance restraints and experimental validation (salt bridge charge inversion; double cysteine substitution and crosslinking). It does not require directly fitting structures into an envelope obtained from electron microscopy, but relies on lower resolution information, in particular the symmetry parameters of the helix forming the pilus. We validate the strategy with T4P where either a higher resolution structure is available (for the gonococcal (GC) pilus from Neisseria gonorrhoeae), or where we can compare our results to additional experimental data (for Vibrio cholerae TCP). The models are of sufficient precision to compare the architecture of the different pili in detail. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:436 / 444
页数:9
相关论文
共 50 条
  • [1] Predicting Homogeneous Pilus Structure from Monomeric Data and Sparse Constraints
    Xiao, Ke
    Shu, Chuanjun
    Yan, Qin
    Sun, Xiao
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [2] Detailed structural and assembly model of the type II secretion pilus from sparse data
    Campos, Manuel
    Nilges, Michael
    Cisneros, David A.
    Francetic, Olivera
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (29) : 13081 - 13086
  • [3] Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion
    Fenwick, R. Bryn
    Oyen, David
    van den Bedem, Henry
    Dyson, H. Jane
    Wright, Peter E.
    BIOPHYSICAL JOURNAL, 2021, 120 (02) : 296 - 305
  • [4] Inferring Protein Structures from Sparse and Ambiguous Data
    MacCallum, Justin L.
    Perez, Alberto
    Dill, Kenneth A.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 655A - 655A
  • [5] Fuzzy modeling of sparse data
    Anile, AM
    Spinella, S
    DEVELOPMENTS IN SPATIAL DATA HANDLING, 2005, : 163 - 172
  • [6] Detecting Lagrangian coherent structures from sparse and noisy trajectory data
    Mowlavi, Saviz
    Serra, Mattia
    Maiorino, Enrico
    Mahadevan, L.
    JOURNAL OF FLUID MECHANICS, 2022, 948
  • [7] EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF SPARSE STRUCTURES
    Nesetril, Jaroslav
    De Mendez, Patrice Ossona
    JOURNAL OF SYMBOLIC LOGIC, 2019, 84 (02) : 452 - 472
  • [8] Sparse modeling for the geotechnical observation data
    Kurita, T.
    4TH INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING AND MATERIALS SCIENCE (ICCEMS 2019), 2019, 652
  • [9] SPARSE MODELING ON DISTRIBUTED ENCRYPTION DATA
    Bandoh, Yukihiro
    Nakachi, Takayuki
    Kiya, Hiroshi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2123 - 2127
  • [10] Eigenvoice modeling with sparse training data
    Kenny, P
    Boulianne, G
    Dumouchel, P
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2005, 13 (03): : 345 - 354