The role of reactive oxygen species and nitric oxide in the formation of root cortical aerenchyma under cadmium contamination

被引:5
|
作者
Diaz, Alejandro Sandria [1 ]
Cruz, Yasmini da Cunha [1 ]
Duarte, Vinicius Politi [1 ]
de Castro, Evaristo Mauro [1 ]
Magalhaes, Paulo Cesar [2 ]
Pereira, Fabricio Jose [3 ]
机构
[1] Univ Fed Lavras, Lavras, Brazil
[2] Embrapa Milho & Sorgo, Sete Lagoas, Brazil
[3] Univ Fed Alfenas, Inst Ciencias Nat, Rua Gabriel Monteiro da Silva 700, BR-37130001 Alfenas, MG, Brazil
关键词
OXIDATIVE STRESS; ANTIOXIDATIVE DEFENSE; HYDROGEN-PEROXIDE; MAIZE ROOTS; TOLERANCE; TOXICITY; ANATOMY; ACCUMULATION; RESPONSES; SEEDLINGS;
D O I
10.1111/ppl.13582
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The present study aimed to evaluate root cortical aerenchyma formation in response to Cd-driven hydrogen peroxide (H2O2) production and the role of nitric oxide (NO) in the alleviation of Cd oxidative stress in maize roots and its effects on aerenchyma development. Maize plants were subjected to continuous flooding for 30 days, and the following treatments were applied weekly: Cd(NO3)(2) at 0, 10, and 50 mu M and Na-2[Fe(CN)(5)NO]center dot 2H(2)O (an NO donor) at 0.5, 0.1, and 0.2 mu M. The root biometrics; oxidative stress indicators H2O2 and malondialdehyde (MDA); and activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were analyzed. The root dry and fresh masses decreased at higher concentrations of NO and Cd. H2O2 also decreased at higher NO concentrations; however, MDA increased only at higher Cd levels. SOD activity decreased at higher concentrations of NO, but CAT activity increased. Aerenchyma development decreased in response to NO. Consequently, NO acts as an antagonist to Cd, decreasing the concentration of H2O2 by reducing SOD activity and increasing CAT activity. Although H2O2 is directly linked to aerenchyma formation, increased H2O2 concentrations are necessary for root cortical aerenchyma development.
引用
收藏
页码:2323 / 2333
页数:11
相关论文
共 50 条
  • [41] Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion
    B.F. Becker
    C. Kupatt
    P. Massoudy
    S. Zahler
    Zeitschrift für Kardiologie, 2000, 89 (Suppl 9): : IX88 - IX91
  • [42] Nitric oxide and reactive oxygen species in Parkinson's disease
    Tieu, K
    Ischiropoulos, H
    Przedborski, S
    IUBMB LIFE, 2003, 55 (06) : 329 - 335
  • [43] Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes
    del Río, LA
    Corpas, FJ
    Sandalio, LM
    Palma, JM
    Gómez, M
    Barroso, JB
    JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) : 1255 - 1272
  • [44] Reactive oxygen species and nitric oxide signaling in bystander cells
    Jella, Kishore Kumar
    Moriarty, Roisin
    McClean, Brendan
    Byrne, Hugh J.
    Lyng, Fiona M.
    PLOS ONE, 2018, 13 (04):
  • [45] Measurement of Nitric Oxide and Reactive Oxygen Species in the Vascular Wall
    Rodriguez-Rodriguez, Rosalia
    Simonsen, Ulf
    CURRENT ANALYTICAL CHEMISTRY, 2012, 8 (04) : 485 - 494
  • [46] Rebirth and death: Nitric oxide and reactive oxygen species in seeds
    Bethke, P.
    Libourel, I.
    Jones, R.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2007, 146 (04): : S56 - S56
  • [47] Interactions between melatonin, reactive oxygen species, and nitric oxide
    Lahiri, DK
    Ghosh, C
    OXIDATIVE/ENERGY METABOLISM IN NEURODEGENERATIVE DISORDERS, 1999, 893 : 325 - 330
  • [48] SOURCES OF VASCULAR NITRIC OXIDE AND REACTIVE OXYGEN SPECIES AND THEIR REGULATION
    Tejero, Jesus
    Shiva, Sruti
    Gladwin, Mark T.
    PHYSIOLOGICAL REVIEWS, 2019, 99 (01) : 311 - 379
  • [49] Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion
    Becker, BF
    Kupatt, C
    Massoudy, P
    Zahler, S
    ZEITSCHRIFT FUR KARDIOLOGIE, 2000, 89 : 88 - 91
  • [50] Reactive Oxygen Species, Nitric Oxide and Hypertensive Endothelial Dysfunction
    Bayraktutan, Ulvi
    CURRENT HYPERTENSION REVIEWS, 2005, 1 (03) : 201 - 215