Assistive Classification for Improving the Efficiency of Avian Species Richness Surveys

被引:0
|
作者
Zhang, Liang [1 ]
Towsey, Michael [1 ]
Eichinski, Philip [1 ]
Zhang, Jinglan [1 ]
Roe, Paul [1 ]
机构
[1] Queensland Univ Technol, Sch Elect Engn & Comp Sci, Brisbane, Qld, Australia
关键词
classification; avian species richness; acoustic sensor data; acoustic indices; BIRD SOUNDS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.
引用
收藏
页码:1015 / 1020
页数:6
相关论文
共 50 条
  • [21] Accounting for detectability improves estimates of species richness in tropical bat surveys
    Meyer, Christoph F. J.
    Aguiar, Ludmilla M. S.
    Aguirre, Luis F.
    Baumgarten, Julio
    Clarke, Frank M.
    Cosson, Jean-Francois
    Villegas, Sergio Estrada
    Fahr, Jakob
    Faria, Deborah
    Furey, Neil
    Henry, Mickael
    Hodgkison, Robert
    Jenkins, Richard K. B.
    Jung, Kirsten G.
    Kingston, Tigga
    Kunz, Thomas H.
    MacSwiney, Maria Cristina
    Moya, Isabel
    Patterson, Bruce D.
    Pons, Jean-Marc
    Racey, Paul A.
    Rex, Katja
    Sampaio, Erica M.
    Solari, Sergio
    Stoner, Kathryn E.
    Voigt, Christian C.
    von Staden, Dietrich
    Weise, Christa D.
    Kalko, Elisabeth K. V.
    JOURNAL OF APPLIED ECOLOGY, 2011, 48 (03) : 777 - 787
  • [22] A design-based view of species richness estimation in environmental surveys
    Di Biase, Rosa M.
    Fattorini, Lorenzo
    Marcelli, Agnese
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2025,
  • [23] Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys
    Kery, M.
    Royle, J. A.
    JOURNAL OF APPLIED ECOLOGY, 2008, 45 (02) : 589 - 598
  • [24] Classifying and ranking audio clips to support bird species richness surveys
    Zhang, Liang
    Towsey, Michael
    Zhang, Jinglan
    Roe, Paul
    ECOLOGICAL INFORMATICS, 2016, 34 : 108 - 116
  • [25] Effects of historical and contemporary factors on global patterns in avian species richness
    Qian, Hong
    JOURNAL OF BIOGEOGRAPHY, 2008, 35 (08) : 1362 - 1373
  • [26] Rapid assessment of avian species richness and abundance using acoustic indices
    Bradfer-Lawrence, Tom
    Bunnefeld, Nils
    Gardner, Nick
    Willis, Stephen G.
    Dent, Daisy H.
    ECOLOGICAL INDICATORS, 2020, 115
  • [27] Managed forest landscape structure and avian species richness in the southeastern US
    Loehle, C
    Wigley, TB
    Rutzmoser, S
    Gerwin, JA
    Keyser, PD
    Lancia, RA
    Reynolds, CJ
    Thill, RE
    Weih, R
    White, D
    Wood, PB
    FOREST ECOLOGY AND MANAGEMENT, 2005, 214 (1-3) : 279 - 293
  • [28] Impact of greenspaces in city on avian species richness and abundance in Northern Africa
    Aouissi, Hani Amir
    Gasparini, Julien
    Belabed, Adnene Ibrahim
    Bouslama, Zihad
    COMPTES RENDUS BIOLOGIES, 2017, 340 (08) : 394 - 400
  • [29] Influence of habitat features of urban streetscapes on richness and abundance of avian species
    Dutta, Sarbasis
    Saha, Goutam Kumar
    Mazumdar, Subhendu
    ORNIS HUNGARICA, 2021, 29 (01) : 20 - 32
  • [30] Factors shaping avian alien species richness in Australia vs Europe
    McKinney, Matthew
    Kark, Salit
    DIVERSITY AND DISTRIBUTIONS, 2017, 23 (11) : 1334 - 1342