Optimization of a Single-Cell Solid-Oxide Fuel Cell Using Computational Fluid Dynamics

被引:13
|
作者
Sembler, William J. [1 ]
Kumar, Sunil [2 ]
机构
[1] US Merchant Marine Acad, Kings Point, NY 11024 USA
[2] NYU, Polytech Inst, Brooklyn, NY 11024 USA
来源
关键词
computational fluid dynamics; CFD; fuel cell; modeling; optimization; solid-oxide fuel cell; SOFC;
D O I
10.1115/1.4002616
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
To determine the effects of various parameters on the performance of a solid-oxide fuel cell (SOFC), a series of simulations was performed using computational fluid dynamics (CFD). The first step in this process was to create a three-dimensional CFD model of a specific single-cell SOFC for which experimental performance data had been published. The CFD simulation results developed using this baseline model were validated by comparing them to the experimental data. Numerous CFD simulations were then performed with various thermal conditions at the cell's boundaries and with different fuel and air inlet temperatures. Simulations were also conducted with fuel utilization factors from 30% to 90% and air ratios from 2 to 6. As predicted by theory, conditions that resulted in higher cell temperatures or in lower air and fuel concentrations resulted in lower thermodynamically reversible voltages. However, the higher temperatures also reduced Ohmic losses and, when operating with low to moderate current densities, activation losses, which often caused the voltages actually being produced by the cell to increase. Additional simulations were performed during which air and fuel supply pressures were varied from 1 atm to 15 atm. Although the increased pressure resulted in higher cell voltages, this benefit was significantly reduced or eliminated when air-and fuel-compressor electrical loads were included. CFD simulations were also performed with counterflow, crossflow, and parallel-flow fuel-channel to air-channel configurations and with various flow-channel dimensions. The counterflow arrangement produced cell voltages that were equal to or slightly higher than the other configurations, and it resulted in a differential temperature across the electrolyte that was significantly less than that of the parallel-flow cell and was close to the maximum value in the crossflow cell, which limits stress caused by uneven thermal expansion. The use of wider ribs separating adjacent flow channels reduced the resistance to the electrical current conducted through the ribs. However, it also reduced the area over which incoming fuel and oxygen were in contact with the electrode surfaces and, consequently, impeded diffusion through the electrodes. Reducing flow-channel height reduced electrical resistance but increased the pressure drop within the channels. Plots of voltage versus current density, together with temperature and species distributions, were developed for the various simulations. Using these data, the effect of each change was determined and an optimum cell configuration was established. This process could be used by fuel cell designers to better predict the effect of various changes on fuel cell performance, thereby facilitating the design of more efficient cells. [DOI: 10.1115/1.4002616]
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Adjoint method for solid-oxide fuel cell simulations
    Kapadia, S.
    Anderson, W. K.
    Elliott, L.
    Burdyshaw, C.
    JOURNAL OF POWER SOURCES, 2007, 166 (02) : 376 - 385
  • [22] COMPUTATIONAL FLUID DYNAMICS CALCULATION OF A PLANAR SOLID OXIDE FUEL CELL DESIGN RUNNING ON SYNGAS
    Pianko-Oprych, Paulina
    Zinko, Tomasz
    Jaworski, Zdzislaw
    CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2017, 38 (04): : 513 - 521
  • [23] Three-dimensional computational fluid dynamics modeling of button solid oxide fuel cell
    Alhazmi, N.
    Almutairi, Ghzzai
    Alenazey, Feraih
    AlOtaibi, Bandar
    ELECTROCHIMICA ACTA, 2021, 390
  • [24] Three-Dimensional Computational Fluid Dynamics Modeling of a Planar Solid Oxide Fuel Cell
    Ni, Meng
    CHEMICAL ENGINEERING & TECHNOLOGY, 2009, 32 (10) : 1484 - 1493
  • [25] Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cell
    Choi, H. -W.
    Pharoah, J. G.
    Ryland, D.
    Kettner, A.
    Gnanapragasam, N.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 3161 - 3170
  • [26] Topology optimization of microstructure of solid-oxide fuel cell anode to minimize thermal mismatch
    Li, Qiangqiang
    Duan, Yongqiang
    Chai, Dan
    Zhang, Xiongwen
    Min, Xiaoteng
    Li, Guojun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (02) : 3214 - 3230
  • [27] Real-time optimization of an experimental solid-oxide fuel-cell system
    Ferreira, T. de Avila
    Wuillemin, Z.
    Marchetti, A. G.
    Salzmann, C.
    Van Herle, J.
    Bonvin, D.
    JOURNAL OF POWER SOURCES, 2019, 429 : 168 - 179
  • [28] Three-dimensional multiphysics model of a planar solid oxide fuel cell using computational fluid dynamics approach
    Celik, A. N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (42) : 19730 - 19748
  • [29] Development of a Detailed Planar Solid Oxide Fuel Cell Computational Fluid Dynamics Model for Analyzing Cell Performance Degradation
    Verda, Vittorio
    von Spakovsky, Michael R.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (01): : 0110051 - 0110059
  • [30] 100-Kilowatt solid-oxide fuel cell tested
    不详
    CHEMICAL ENGINEERING PROGRESS, 1997, 93 (12) : 17 - 17